Problem set 1

  1. What is the rank of the matrix A? \[ A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \\ 5 & 4 & -2 & -3 \end{bmatrix} \]
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
## [1] 4
  1. Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?

In a mxn matrix where m > n the maximum rank will be the minimum between m and n. Hence the maximum rank is n. Assuming the matrix is non-zero, the minimum rank is 1.

  1. What is the rank of matrix B?

\[ B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \end{bmatrix} \]

##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2
## [1] 1

Problem set 2

Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution. \[ A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \]

Please show your work using an R-markdown document. Please name your assignment submission with your first initial and last name.

##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    0    4    5
## [3,]    0    0    6

Eigen values

To find the eigenvalues of A, we must solve det(λI-A) =0 for λ.Where I is Identitity Matrix.

\[ det(λ\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}) = 0 \] \[ det(\begin{bmatrix} λ & 0 & 0 \\ 0 & λ & 0 \\0 & 0 & λ \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}) = 0 \]

\[ det(\begin{bmatrix} λ-1 & -2 & -3 \\ 0 & λ-4 & -5 \\0 & 0 & λ-6 \end{bmatrix}) = 0 \] \[ =(λ-1) det(\begin{bmatrix} λ-4 & -5 \\ 0 & λ-6 \end{bmatrix}) - (-2) det(\begin{bmatrix}0 & -5 \\ 0 & λ-6 \end{bmatrix}+(-3)det(\begin{bmatrix}0 & λ -4 \\ 0 & 0 \end{bmatrix}) \]

\[ =(λ-1) det(\begin{bmatrix} λ-4 & -5 \\ 0 & λ-6 \end{bmatrix}) + 2 det(\begin{bmatrix}0 & -5 \\ 0 & λ-6 \end{bmatrix}-3 det(\begin{bmatrix}0 & λ -4 \\ 0 & 0 \end{bmatrix}) \]

\[ = -λ^3 + 11λ^2 -34λ +24 \]

\[ = λ^2 - 10λ +24 \] \[ = λ^2 -4λ -6λ +24 \] \[ = (λ -1)(λ -4) (λ -6) \]

Hence, The EigenValues for λ are:- λ = 1 λ = 4 λ = 6

Let us calculate the Eigenvectors for the 3 values of λ :-

For λ = 1

det(λI-A) = \[det(1.\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}) \]

\[ = det(1.\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}) \]

\[= \begin{bmatrix} 0 & -2 & -3 \\ 0 & -3 & -5 \\ 0 & 0 & -5 \end{bmatrix}\]

Reduce Matrix to reduced row echelon form gives us:-

## [1] 0.0 1.0 1.5
## [1]  0.0  0.0 -0.5
## [1] 0 0 1
## [1] 0 1 0
## [1] 0 0 0
##      [,1] [,2] [,3]
## [1,]    0    1    0
## [2,]    0    0    1
## [3,]    0    0    0

\[ (λ I - A)v = \begin{bmatrix}0 & 1 & 0 \\0 & 0 & 1 \\0 & 0 & 0 \end{bmatrix}\begin{bmatrix}v_{1} \\v_{2} \\v_{3}\end{bmatrix}\]

\(v_{2} = 0\)

\(v_{3} = 0\)

Let, \(v_{1} =a\)
a be any whole number

\[E_{λ =1}=a\begin{bmatrix}1 \\0 \\0\end{bmatrix}\]

For λ = 4

\[ = det(4.\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}) \]

\[=\begin{bmatrix}3 & -2 & -3 \\0 & 0 & -5 \\0 & 0 & -2\end{bmatrix}\begin{bmatrix}v_{1} \\v_{2} \\v_{3}\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\] Reduce Matrix to reduced row echelon form gives us:-

## [1]  1.0000000 -0.6666667 -1.0000000
## [1] 0 0 1
## [1]  1.0000000 -0.6666667  0.0000000
## [1] 0 0 0
##      [,1]       [,2] [,3]
## [1,]    1 -0.6666667    0
## [2,]    0  0.0000000    1
## [3,]    0  0.0000000    0

\[(λ I - A)v = \begin{bmatrix}1 & -0.6666667 & 0 \\0 & 0 & 1 \\0 & 0 & 0 \end{bmatrix}\begin{bmatrix}v_{1} \\v_{2} \\v_{3}\end{bmatrix}\]

\(v_{1} - 0.6666667v_{2} = 0\)

\(v_{3} = 0\)

Let, \(v_{2} =a\)

\(ie. 0.6666667a= v_{1}\)

\[E_{λ =4}=a\begin{bmatrix}0.6666667 \\1 \\0\end{bmatrix}\]

For λ = 6

\[ = det(6.\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}) \]

\[\begin{bmatrix}5 & -2 & -3 \\0 & 2 & -5 \\0 & 0 & 0\end{bmatrix}\begin{bmatrix}v_{1} \\v_{2} \\v_{3}\end{bmatrix}=\begin{bmatrix}0 \\0 \\0\end{bmatrix}\] Reduce Matrix to reduced row echelon form gives us:-

## [1]  1.0 -0.4 -0.6
## [1]  0.0  1.0 -2.5
## [1]  1.0  0.0 -1.6
##      [,1] [,2] [,3]
## [1,]    1    0 -1.6
## [2,]    0    1 -2.5
## [3,]    0    0  0.0

\[(λ I - A)v = \begin{bmatrix}1 & -0.4 & -1.6 \\0 & 1 & -2.5 \\0 & 0 & 0 \end{bmatrix}\begin{bmatrix}v_{1} \\v_{2} \\v_{3}\end{bmatrix}\]

\(v_{1} - 1.6v_{3} = 0\)

\(v_{2} - 2.5v_{3}= 0\)

Let, \(v_{3} =a\)

\(ie. 1.6a= v_{1}\)

\(2.5a= v_{2}\)

\[E_{λ =6}=a\begin{bmatrix}1.6 \\2.5 \\0\end{bmatrix}\]

Verify using R

## [1] 6 4 1
##           [,1]      [,2] [,3]
## [1,] 0.5108407 0.5547002    1
## [2,] 0.7981886 0.8320503    0
## [3,] 0.3192754 0.0000000    0