Problem set 1
(1) What is the rank of the matrix A?
library(matrixcalc)
library(pracma)
## Warning: package 'pracma' was built under R version 3.5.3
matrix_A <- matrix(data = c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow = 4, ncol = 4, byrow = TRUE)
matrix_A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
matrix.rank(matrix_A)
## [1] 4
The rank of the matrix A is 4.
(2) Given an mxn matrix where m>n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero? Maximum rank = m (rows) Minimum rank = 1 (all other rows could be linearly dependent)
Ans:The maximum rank would be equal to n since the maximum rank is the lesser of either the number of rows or the number of columns. Since m>n, then n is the maximum rank. The minimum rank of any non-zero matrix is 1.
(3) What is the rank of matrix B?
matrix_B <- matrix(data = c(1,2,1,3,6,3,2,4,2), nrow = 3, ncol = 3, byrow = TRUE)
matrix_B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
matrix.rank(matrix_B)
## [1] 1
Problem set 2
Compute the eigenvalues and eigenvectors of the matrix A. You will need to show your work. You will need to write out the characteristic polynomial and show your solution.
matrix_a <- matrix(c(1,2,3,0,4,5,0,0,6), nrow=3, ncol=3, byrow=TRUE)
matrix_a
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
eigen(matrix_a)$values
## [1] 6 4 1
eigenvalue should be 1, 4, 6
For ??=1:
rref(matrix_a - 1 * diag(3))
## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
Then v1=v1 and v2=0 and v3=0. The E??=1 = [1 0 0].
For ??=4:
rref(matrix_a - 4 * diag(3))
## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
Then v1-(2/3)v2 = 0 and v3=0. The E??=4 = [1 1.5 0].
For ??=6:
rref(matrix_a - 6 * diag(3))
## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
Then v1-(1.6)v3=0 and v2-(2.5)v3=0. The E??=6 = [1.6 2.5 1].