A <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), 4, 4, byrow=TRUE)
qr(A)$rank
## [1] 4
Answer:
Maximum rank = n (the smaller of the row or column matrix)
Minimum rank = 1 (since the matrix is non-zero)
B <- matrix(c(1,2,1,3,6,3,2,4,2), 3, 3, byrow=TRUE)
qr(B)$rank
## [1] 1
Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution. \[\mathbf{A} = \left[\begin{array} {rrr} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{array}\right]\]
det(A- \(\lambda\) \(I_{3}\)) = 0 :
\[\left[\begin{array} {rrr} \lambda - 1 & -2 & -3 \\ 0 & \lambda - 4 & -5 \\ 0 & 0 & \lambda - 6 \end{array}\right] = 0\]
(1- \(\lambda\))(4- \(\lambda\))(6- \(\lambda\)) = 0
Eigenvalues = 1, 4, and 6.
The chractoeristic polynomial is p(\(\lambda\)) = (1- \(\lambda\))(4- \(\lambda\))(6- \(\lambda\)) = \(-\lambda^{3}\) \(-11\lambda^{2}\)+ \(34\lambda\)-24
1). \(\lambda\) = 1
\[\left[\begin{array} {rrr} 1 - 1 & -2 & -3 \\ 0 & 1 - 4 & -5 \\ 0 & 0 & 1 - 6 \end{array}\right] = \left[\begin{array} {rrr} 0 & -2 & -3 \\ 0 & -3 & -5 \\ 0 & 0 & -5 \end{array}\right]\]
row reduction: \[\left[\begin{array} {rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right]\]
Eigenspace: \[\mathbf{E_{\lambda = 1}(A)}= \left(\begin{array} {rrr} 1 \\ 0\\ 0 \end{array}\right)\]
2). \(\lambda\) = 4
\[\left[\begin{array} {rrr} 4 - 1 & -2 & -3 \\ 0 & 4 - 4 & -5 \\ 0 & 0 & 4 - 6 \end{array}\right] = \left[\begin{array} {rrr} 3 & -2 & -3 \\ 0 & 0 & -5 \\ 0 & 0 & -2 \end{array}\right]\]
row reduction: \[\left[\begin{array} {rrr} 1 & -2/3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right]\]
Eigenspace: \[\mathbf{E_{\lambda = 4}(A)}= \left(\begin{array} {rrr} 1 \\ -2/3\\ 0 \end{array}\right)\]
3). \(\lambda\) = 6
\[\left[\begin{array} {rrr} 6 - 1 & -2 & -3 \\ 0 & 6 - 4 & -5 \\ 0 & 0 & 6 - 6 \end{array}\right] = \left[\begin{array} {rrr} 5 & -2 & -3 \\ 0 & 2 & -5 \\ 0 & 0 & 0 \end{array}\right]\]
row reduction: \[\left[\begin{array} {rrr} 1 & 0 & -1.6 \\ 0 & 1 & -2.5 \\ 0 & 0 & 0 \end{array}\right]\]
Eigenspace: \[\mathbf{E_{\lambda = 6}(A)}= \left(\begin{array} {rrr} 1.6 \\ 2.5\\ 1 \end{array}\right)\]