- What is the rank of the matrix A?
A <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow=4, byrow=TRUE)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
Answer:
There are four (4) non-zero rows, therefore Rank(A) = 4. This is confirmed by the Rank(A), above.
_
- Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?
Answer:
The maximum number of linearly independent rows in a matrix A is called the row rank of A, and the maximum number of linearly independent columns in A is called the column rank of A. If A is an m by n matrix, that is, if A has m rows and n columns, then it is obvious that
row rank of A <= m
column rank of A <=n
Additionally, for any matrix A, the row rank of A = the column rank of A, the common value is simply called the rank of the matrix. Therefore, if A is m x n, it follows that:
rank(A) <= min(m,n)
For example, the rank of a 3 x 5 matrix can be no more than 3, and the rank of a 4 x 2 matrix can be no more than 2. Assuming a non-zero matrix, the rank should be at least 1.
_
- What is the rank of matrix B?
B <- matrix(c(1,2,1,3,6,3,2,4,2), nrow=3, byrow=TRUE)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
## [1] 1
Answer:
There is one (1) non-zero row, therefore Rank(B) = 1. This is confirmed by the Rank(B) above.
_
Problem Set 2
- Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.
A <- matrix(c(1,2,3,0,4,5,0,0,6), nrow=3, byrow=TRUE)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
A is a triangular matrix. Therefore its eigenvalues are values on the diagonal, so \(\lambda_1=1\), \(\lambda_2=4\) and \(\lambda_3=6\). This is confirmed below with eigen(A).
## [1] 6 4 1
The characteristic polynomial is:
\(p_A(\lambda) = (1-\lambda)(4-\lambda)(6-\lambda)\) or
\(p_A(\lambda) = 24-34\lambda+11\lambda^2-\lambda^3\).
If \(\lambda=1\), then \(A - 1I_3\) is row-reduced to
## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
\[
\begin{bmatrix}
0 &1 &0\\
0 &0 &1\\
0&0&0
\end{bmatrix}
\begin{bmatrix}
v_1\\
v_2\\
v_3
\end{bmatrix}
=
\begin{bmatrix}
0\\
0\\
0
\end{bmatrix}
\]
Then \(v_1=v_1\) and \(v_2=0\) and \(v_3=0\). The eigenspace is
\[
E_{\lambda=1}=
\begin{bmatrix}
1\\
0\\
0
\end{bmatrix}
\]
If \(\lambda=4\), then \(A - 4I_3\) is row-reduced to
## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
\[
\begin{bmatrix}
1 &-\frac{2}{3} &0\\
0 &0 &1\\
0&0&0
\end{bmatrix}
\begin{bmatrix}
v_1\\
v_2\\
v_3
\end{bmatrix}
=
\begin{bmatrix}
0\\
0\\
0
\end{bmatrix}
\]
Then \(v_1 - \frac{2}{3}v_2=0\) and \(v_3=0\).
Or \(v_1=v_1\) and \(v_2=\frac{3}{2}v_1=1.5v_1\) and \(v_3=0\).
The eigenspace is
\[
E_{\lambda=4}=
\begin{bmatrix}
1\\
1.5\\
0
\end{bmatrix}
\]
Finally, if \(\lambda=6\), then \(A - 6I_3\) is row-reduced to
## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
\[
\begin{bmatrix}
1 &0 &-1.6\\
0 &1 &-2.5\\
0&0&0
\end{bmatrix}
\begin{bmatrix}
v_1\\
v_2\\
v_3
\end{bmatrix}
=
\begin{bmatrix}
0\\
0\\
0
\end{bmatrix}
\]
Then \(v_1-1.6v_3=0\) and \(v_2-2.5v_3=0\).
Or \(v_1=1.6v_3\) and \(v_2=2.5v_3\) and \(v_3=v_3\).
The eigenspace is
\[
E_{\lambda=6}=
\begin{bmatrix}
1.6\\
2.5\\
1
\end{bmatrix}
\]