David Knaack
02/15/2020
The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models). ### Source Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391-411.
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
A data frame with 32 observations on 11 variables.
Index | Field | Detail |
---|---|---|
[, 1] | mpg | Miles/(US) gallon |
[, 2] | cyl | Number of cylinders |
[, 3] | disp | Displacement (cu.in.) |
[, 4] | hp | Gross horsepower |
[, 5] | drat | Rear axle ratio |
[, 6] | wt | Weight (lb/1000) |
[, 7] | qsec | 1/4 mile time |
[, 8] | vs | V/S |
[, 9] | am | Transmission (0 = automatic, 1 = manual) |
[,10] | gear | Number of forward gears |
[,11] | carb | Number of carburetors |
formulaTextPoint <- reactive({
paste("mpg ~", "as.integer(", input$variable, ")") })
fit <- reactive({
lm(as.formula(formulaTextPoint()), data=mpgData) })
output$fit <- renderPrint({
summary(fit()) })
output$mpgPlot <- renderPlot({
with(mpgData, {
plot(as.formula(formulaTextPoint()))
abline(fit(), col=2)
}) })