The statistical model:

\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)

Where:

Let’s define the parameters:

nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1

Simulate other variables:

set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)

Simulate elevation and slope:

elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)

Simulate response variable:

resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff 

Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):

  1. Fit a linear mixed model with the response variable as a function of elevation and slope with stand as a random effect. Are the estimated parameters similar to the intial parameters as we defined them?
library(lme4)
## Loading required package: Matrix
mod <- lmer(resp2 ~ elevation + slope + (1|stand))

summary(mod)
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ elevation + slope + (1 | stand)
## 
## REML criterion at convergence: 82
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.65583 -0.62467 -0.01693  0.53669  1.41736 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stand    (Intercept) 1.208    1.099   
##  Residual             1.358    1.165   
## Number of obs: 20, groups:  stand, 5
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -21.314628   6.602050  -3.228
## elevation     0.020600   0.004916   4.190
## slope         0.095105   0.016441   5.785
## 
## Correlation of Fixed Effects:
##           (Intr) elevtn
## elevation -0.991       
## slope      0.049 -0.148
# estimated parameters are different to the initial parameters
  1. Create a function for your model and run 1000 simulations of that model.
sim_fun = function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
  stand = rep(LETTERS[1:nstand], each = nplot)
  standeff = rep(rnorm(nstand, 0, sds), each = nplot)
  ploteff = rnorm(nstand * nplot, 0, sd)
  elevation = rep(runif(nstand, 1000, 1500), each = nplot)
  slope = runif(nstand * nplot, 2, 75)
  resp2 = b0 + b1 * elevation + b2 * slope + standeff + ploteff
  dat = data.frame(resp2, elevation, slope, stand)
  lmer(resp2 ~ elevation + slope + (1|stand), data = dat)
}

run_1000 <- replicate(n = 1000, expr = sim_fun())
  1. Extract the stand and residual variances from this simulation run. Print the first 6 rows of the data.
library(broom)
library(purrr)
library(furrr)
## Loading required package: future
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0     ✔ readr   1.1.1
## ✔ tibble  1.4.2     ✔ dplyr   0.7.7
## ✔ tidyr   0.8.1     ✔ stringr 1.3.1
## ✔ ggplot2 3.1.0     ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ tidyr::expand() masks Matrix::expand()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
variances <- run_1000 %>% 
  map_dfr(tidy, effects = "ran_pars", scales = "vcov")
head(variances, 6)
##                       term    group  estimate
## 1    var_(Intercept).stand    stand 5.5570457
## 2 var_Observation.Residual Residual 0.9513797
## 3    var_(Intercept).stand    stand 2.6104821
## 4 var_Observation.Residual Residual 1.1057029
## 5    var_(Intercept).stand    stand 9.7313438
## 6 var_Observation.Residual Residual 1.3649953
  1. Choose three different sample sizes (your choice) and run 1000 model simulations with each sample size. Create 3 visualizations that compare distributions of the variances for each of the 3 sample sizes. Make sure that the axes are labelled correctly. What do these graphs say about the relationship between sample size and variance?
library(ggplot2)
library(tidyverse)

smis3groups <- c(5, 25, 200) %>%
  set_names(c("sample_size = 5","sample_size = 25", "sample_size = 200" )) %>%
  map(~replicate(1000, sim_fun(nstand = .x) ) )

variances3groups <- smis3groups %>%
     modify_depth(2, ~tidy(.x, effects = "ran_pars", scales = "vcov") ) %>%
     map_dfr(bind_rows, .id = "stand_num") %>%
     filter(group == "stand")

# sample size increases, the precision of estimating the true variances increases
ggplot(variances3groups, aes(x = estimate) ) +
     geom_density(fill = "red", alpha = .25) +
     facet_wrap(~stand_num) +
     geom_vline(xintercept = 4)

  1. Plot the coefficients of the estimates of elevation and slope. Hint: the x-axis should have 1000 values. Discuss the graphs.
coef3groups <- run_1000 %>% 
  future_map(tidy, effects = "fixed") %>% 
  bind_rows()

coef3groups %>% 
  dplyr::filter(term %in% c("elevation", "slope")) %>% 
  group_by(term) %>% 
  mutate(x = 1 : 1000) %>%
  ungroup() %>% 
  mutate(real_value = ifelse(term == "elevation", 0.005, 0.1)) %>% 
  ggplot(aes(x = x, y = estimate)) +
  geom_line() +
  facet_wrap(~term) +
  geom_hline(aes(yintercept = real_value, color = term), linetype = 4, size = 0.5) +
  theme_bw()

  1. Submit a link to this document in R Pubs to your Moodle. This assignment is worth 25 points.