To facilitate all those who are watching videos on learning Econometrics with R can use codes used in videos given below
library(dplyr) ## If you get error write install.packages("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(gapminder) ## Same as above
gapminder ## Top 10 values if data are in tibble form of dplyr
glimpse(gapminder) ## It is used to get a quick overview of data
View(gapminder) ## If one wants to browse full data in spreadsheet
head(gapminder) ## To get first 6 values of data
tail(gapminder) ## To get last 6 values of data
?gapminder ## ?packagename is for help
## starting httpd help server ...
## done
gapminder %>% sample_n(size = 5) # 5 values at random
gapminder %>% filter(year==2007) # getting data only for 2007
gapminder %>% filter(year==2007) %>% arrange(gdpPercap) # arrange verb is used
gapminder %>% filter(year==2007, country=="India") # getting data only for India for 2007
gapminder2007<-gapminder %>% filter(year==2007) ## Now this data is stored in R
gapminderSA<-gapminder %>% filter(country %in% c("Bangladesh","India","Pakistan","Sri Lanka","Nepal", "Afghanistan","Bhutan", "Maldives")) ## For selecting data for South Asia
gapminderSA %>% filter(year==2007) %>% arrange(lifeExp)
gapminderSA %>% filter(year==2007) %>% arrange(desc(lifeExp))
gapminderSA %>% filter(year==2007) %>%select(country,gdpPercap,lifeExp) %>% arrange(desc(lifeExp))
gapminder %>% mutate(pop=pop/1000000)
gapminder %>% group_by(continent) %>% summarise(mean=mean(lifeExp),min=min(lifeExp),max=max(lifeExp),med=median(lifeExp))
library(ggplot2)
gapminder2007<- gapminder %>% filter(year==2007)
ggplot(gapminder2007)+aes(x=gdpPercap,y=lifeExp,color=continent, size=pop)+geom_point()
p<-ggplot(gapminder2007)+aes(x=gdpPercap,y=lifeExp,color=continent)+
geom_point()
p
p1<-p+labs(title = "",
subtitle = "Relationship between life expectancy and income, 2007",
caption = "Source: Gapminder.org ",
x = "GDP per capita ($)",
y = "Age (years)")
p1
## Facet_wrap() to split data continent wise for better insight
p1+facet_wrap(~continent)
gapminder52<-gapminder %>% filter(year==1952)
p2<-ggplot(gapminder52)+aes(x=gdpPercap,y=lifeExp,color=continent)+geom_point()
p2
gapminder %>% filter(gdpPercap>50000)
library(gridExtra)
## Warning: package 'gridExtra' was built under R version 3.6.2
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
grid.arrange(p1,p2,ncol=2)
gapminder52f<-gapminder52 %>% filter(gdpPercap<50000)
p2+ylim(0,90)
p3<-ggplot(gapminder52f)+aes(x=gdpPercap,y=lifeExp,color=continent)+geom_point()
grid.arrange(p1,p2,p3,ncol=3)
asia52<-gapminder %>% filter(year==1952,gdpPercap<30000,continent=="Asia")
asia07<-gapminder %>% filter(year==2007,continent=="Asia")
p52<-ggplot(asia52)+aes(x=gdpPercap,y=lifeExp)+geom_point()+ylim(20,90)
p07<-ggplot(asia07)+aes(x=gdpPercap,y=lifeExp)+geom_point()+
ylim(20,90)
grid.arrange(p52,p07,ncol=2)
p52
p52+ylim(25,90)
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
p07+ylim(25,90)
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
## Boxplot provides 5 Number Summary Statistics
p11<-ggplot(gapminder2007)+aes(x=continent,y=lifeExp,fill=continent)+
geom_boxplot()
p11
## Interactive plot
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
ggplotly(p1)
library(skimr)
##
## Attaching package: 'skimr'
## The following object is masked from 'package:stats':
##
## filter
gapminder2007 %>% select(lifeExp,continent) %>%
skim()
ggplot(data=gapminder2007)+aes(x=lifeExp)+geom_histogram(binwidth = 5,color="White")+
labs(x="Life Expectancy in Years",y="Number of Countries",
title = "Histogram of distributio",caption = "gapminder.org")+
facet_wrap(~continent,nrow = 2)
#Data for chart from gapminder package
line_df <- gapminder %>%
filter(country == "Bangladesh")
#Make plot
line <- ggplot(line_df, aes(x = year, y = lifeExp)) +
geom_line(colour = "#1380A1", size = 1) +
geom_hline(yintercept = 0, size = 1, colour="#333333")
line
gapminderSA1<-gapminder %>% filter(country %in% c("Bangladesh","India","Pakistan","Sri Lanka","Afghanistan"))
## Multiple Lines
multiple_line <- ggplot(gapminderSA1, aes(x = year, y = lifeExp, colour = country)) +geom_line(size=1)
multiple_line+labs(x="Time",y="Life Expectancy in Years", title = "Life Expectancy over 1952 to 2007 for South Asian Countries")