library(readr)
abalone = read_csv("http://mclean.web.unc.edu/files/2020/02/abalone.csv")
## Parsed with column specification:
## cols(
##   sex = col_character(),
##   length = col_double(),
##   diameter = col_double(),
##   height = col_double(),
##   weight_whole = col_double(),
##   weight_shucked = col_double(),
##   weight_viscera = col_double(),
##   weight_shell = col_double(),
##   rings = col_double()
## )
library(leaps)

#Question 1

lm(log(rings)~weight_whole,data=abalone)
## 
## Call:
## lm(formula = log(rings) ~ weight_whole, data = abalone)
## 
## Coefficients:
##  (Intercept)  weight_whole  
##       2.2313        0.1372
plot(log(rings)~weight_whole,data=abalone)

#Question 2

mod2=lm(rings~weight_whole,data=abalone)
plot(rings~weight_whole,data=abalone)

#Question 3

plot(mod2$residuals ~ mod2$fitted.values)
abline(a = 0, b = 0)

Using a plot of residuals versus fitted values, we can see that this model does not satisfy the second condition of zero mean. The points are not symmetrically distributed with many of the points close to the middle of the plot. Most of the points falls on the left side of the line, which means the points are not distributed evenly. Lastly, there may certainly be outliers skewing the data because many of the plots are close together.

hist(mod2$residuals)

Using a histogram of residuals, we can see that the residuals are skewed to the right - the distribution of the errors are not centered at zero. There appears that there may be outliers that are skewing the data. This plot does not satisfy the fifth condition of normality because the values do not follow a normal distribution.

x <- rnorm(54, 0, 18.26)
qqnorm(x)
qqline(x)

Using a normal q-q plot, we can see that there is quite a bit variability expected because the line only moderately fits overall - the variance for Y is not the same at each X (homoscedastcity). There is a bit of a curvature at a few of the points, which indicates the data may be skewed. The curves may also be another indication of outliers in the data. This conclusion fits with the histogram that the data is not normally distributed and/or there may be relationships among the errors.

#Question 4

mod1 = lm(log(rings)~weight_whole,data=abalone)
summary(mod1)
## 
## Call:
## lm(formula = log(rings) ~ weight_whole, data = abalone)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.48409 -0.15746 -0.04593  0.11053  0.62263 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.23126    0.03265  68.339  < 2e-16 ***
## weight_whole  0.13721    0.02831   4.846 2.06e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2234 on 288 degrees of freedom
## Multiple R-squared:  0.07539,    Adjusted R-squared:  0.07218 
## F-statistic: 23.48 on 1 and 288 DF,  p-value: 2.063e-06

The null hypothesis is that there is not a linear relationship between log(rings) and weight whole. The alternative hypothesis is there there exists a linear relationship between log(rings) and weight whole. There is statistically significant evidence (p-value is 2.063e-06) there is a relationship between log(rings) and weight_whole.

#Question 5

lm(log(rings) ~ weight_whole, data = abalone)
## 
## Call:
## lm(formula = log(rings) ~ weight_whole, data = abalone)
## 
## Coefficients:
##  (Intercept)  weight_whole  
##       2.2313        0.1372
mod1$residuals
##            1            2            3            4            5            6 
## -0.391680503 -0.273104624  0.379683155  0.031628452 -0.153469300 -0.287785725 
##            7            8            9           10           11           12 
## -0.149833327  0.540226707 -0.087349859 -0.087953171 -0.071900004 -0.254650343 
##           13           14           15           16           17           18 
## -0.127714537  0.078506912 -0.141738140 -0.416446285 -0.048520404  0.099979737 
##           19           20           21           22           23           24 
##  0.325181387 -0.062495244 -0.287305503 -0.115065582 -0.348529042 -0.182488486 
##           25           26           27           28           29           30 
## -0.045070012 -0.061555027  0.036453103 -0.131996475  0.124745520 -0.248338841 
##           31           32           33           34           35           36 
##  0.475521932  0.028726885 -0.029840084  0.021337960 -0.117240658 -0.009553743 
##           37           38           39           40           41           42 
##  0.095978325 -0.247721412  0.081571637 -0.174667713  0.267554635 -0.149764723 
##           43           44           45           46           47           48 
##  0.101054967  0.107526098 -0.094004376  0.468867415 -0.223733172 -0.074706627 
##           49           50           51           52           53           54 
## -0.255359283  0.116833721  0.003412276  0.122189883  0.125843173 -0.070061833 
##           55           56           57           58           59           60 
## -0.185589751 -0.121651497 -0.114996979 -0.298693646 -0.008161449  0.061356093 
##           61           62           63           64           65           66 
## -0.020578642 -0.201285784  0.105788593  0.134967408  0.228181945  0.278896200 
##           67           68           69           70           71           72 
##  0.002129043  0.095223689 -0.465633952 -0.187496525  0.002609266  0.109241180 
##           73           74           75           76           77           78 
## -0.082807925 -0.161015661 -0.065534017 -0.106476056 -0.037089609 -0.083096456 
##           79           80           81           82           83           84 
## -0.364993828 -0.037523651  0.474012660  0.426834281  0.268811518 -0.342903573 
##           85           86           87           88           89           90 
## -0.379880739  0.122824628  0.255005826  0.479452994  0.068628040 -0.228924114 
##           91           92           93           94           95           96 
## -0.082664607  0.577486125 -0.051058725 -0.187976748 -0.298968060  0.113836717 
##           97           98           99          100          101          102 
## -0.077930981 -0.345510498  0.467995296 -0.050235486 -0.068278148 -0.018246130 
##          103          104          105          106          107          108 
## -0.015728038  0.297334048  0.030467302  0.332367569 -0.036082982  0.218045094 
##          109          110          111          112          113          114 
## -0.230991003 -0.010033966 -0.223298646 -0.101605223 -0.183923043  0.360306264 
##          115          116          117          118          119          120 
##  0.108143527  0.590452144 -0.165680683 -0.074726856  0.056828276  0.178787586 
##          121          122          123          124          125          126 
## -0.231896962 -0.196552158 -0.326575993 -0.067523512 -0.199227686  0.265038338 
##          127          128          129          130          131          132 
##  0.151003259 -0.023411605 -0.189074401 -0.222269596 -0.076441938 -0.118427143 
##          133          134          135          136          137          138 
##  0.231765749 -0.289097978 -0.068332634  0.014752046 -0.054694699 -0.258286317 
##          139          140          141          142          143          144 
##  0.500505410  0.241438811  0.024447530  0.081388249  0.109698980 -0.116849268 
##          145          146          147          148          149          150 
##  0.307229353  0.259344266 -0.084331314 -0.040199179 -0.209586780 -0.144619477 
##          151          152          153          154          155          156 
## -0.010288150 -0.197918112 -0.112733071 -0.091260245  0.622627081  0.110801739 
##          157          158          159          160          161          162 
## -0.187304833  0.104095934  0.309265427 -0.075961715 -0.218642413  0.031033444 
##          163          164          165          166          167          168 
## -0.084331314 -0.050901290 -0.277426631  0.103730495  0.512381616  0.352073871 
##          169          170          171          172          173          174 
##  0.344343726 -0.131927871  0.306749130 -0.081223938 -0.093524154  0.029021527 
##          175          176          177          178          179          180 
## -0.306994643 -0.151219509  0.573781548 -0.053734253 -0.186330270  0.047137898 
##          181          182          183          184          185          186 
##  0.459948989 -0.079597688  0.415171724  0.030964841 -0.254856153 -0.386437237 
##          187          188          189          190          191          192 
## -0.187556338 -0.253072468 -0.132010592  0.078849928  0.070526509 -0.030957965 
##          193          194          195          196          197          198 
## -0.276191772 -0.165955096 -0.100864704 -0.021264675  0.084338190  0.057925046 
##          199          200          201          202          203          204 
##  0.178599092  0.339107852 -0.245594710 -0.067866528 -0.259864192 -0.071639708 
##          205          206          207          208          209          210 
##  0.013722996 -0.134809209 -0.021284903 -0.140777694 -0.032698999 -0.171786375 
##          211          212          213          214          215          216 
##  0.006588256  0.047544412  0.065678099  0.464900309 -0.172060788  0.551211070 
##          217          218          219          220          221          222 
##  0.260579125 -0.307817882  0.014594610  0.304262979  0.363873635 -0.344824465 
##          223          224          225          226          227          228 
##  0.039449225  0.579887240  0.163369165 -0.054743074  0.133921043 -0.078142903 
##          229          230          231          232          233          234 
##  0.069360254 -0.038778739 -0.159231975  0.315233912 -0.085085951 -0.112993367 
##          235          236          237          238          239          240 
##  0.004667364 -0.095362325 -0.251151576  0.472515273 -0.163553982 -0.063887538 
##          241          242          243          244          245          246 
##  0.366099706 -0.023823225 -0.083645282  0.332818375 -0.160261025 -0.047902975 
##          247          248          249          250          251          252 
## -0.198061430  0.058863952  0.136133664 -0.088090378 -0.077059367 -0.083576678 
##          253          254          255          256          257          258 
## -0.041934490  0.027286216 -0.203495206  0.181617636 -0.272487195 -0.173981680 
##          259          260          261          262          263          264 
## -0.161221470  0.158909952 -0.010562564  0.237391218  0.115946985 -0.015933848 
##          265          266          267          268          269          270 
## -0.158491456  0.019417068 -0.126919832 -0.081587183  0.006999875 -0.206088013 
##          271          272          273          274          275          276 
##  0.276357879  0.324037156 -0.279759142  0.324242966  0.328359162  0.222915926 
##          277          278          279          280          281          282 
##  0.298751963  0.120354910 -0.188662781 -0.310797240  0.160830844 -0.046785094 
##          283          284          285          286          287          288 
## -0.160604041 -0.088501997  0.069314073  0.340274108 -0.484088234 -0.154361143 
##          289          290 
## -0.154018126  0.007254060
rstandard(mod1)
##            1            2            3            4            5            6 
## -1.757256032 -1.224783248  1.706727990  0.141815187 -0.688285451 -1.290359446 
##            7            8            9           10           11           12 
## -0.672035747  2.422860322 -0.391673594 -0.395750712 -0.323962646 -1.142614801 
##           13           14           15           16           17           18 
## -0.586840504  0.352131514 -0.635873141 -1.867329674 -0.217604375  0.448283804 
##           19           20           21           22           23           24 
##  1.458010991 -0.281058842 -1.288211093 -0.516288825 -1.567147970 -0.818209544 
##           25           26           27           28           29           30 
## -0.202463219 -0.276005020  0.163808157 -0.592377563  0.559369923 -1.114567781 
##           31           32           33           34           35           36 
##  2.132359930  0.129380447 -0.133943675  0.095670849 -0.530061816 -0.042910442 
##           37           38           39           40           41           42 
##  0.431346545 -1.111825358  0.366295828 -0.783145903  1.201739943 -0.671729196 
##           43           44           45           46           47           48 
##  0.454314331  0.482104149 -0.421553342  2.102338279 -1.012956381 -0.336296653 
##           49           50           51           52           53           54 
## -1.161479086  0.525874151  0.015338215  0.548894137  0.564300658 -0.314130755 
##           55           56           57           58           59           60 
## -0.836617021 -0.545977369 -0.515979750 -1.339224615 -0.036606687  0.275361155 
##           61           62           63           64           65           66 
## -0.092337231 -0.902678014  0.475753684  0.605317506  1.023755639  1.250595177 
##           67           68           69           70           71           72 
##  0.009547347  0.427934543 -2.100431027 -0.840685614  0.011700735  0.489793615 
##           73           74           75           76           77           78 
## -0.372754058 -0.722028548 -0.293836294 -0.478471704 -0.167830244 -0.372585653 
##           79           80           81           82           83           84 
## -1.639474717 -0.168494623  2.125543373  1.914510112  1.205260779 -1.542484770 
##           85           86           87           88           89           90 
## -1.705083646  0.550742872  1.145494104  2.156041956  0.307913000 -1.028427648 
##           91           92           93           94           95           96 
## -0.372376952  2.589309319 -0.228976412 -0.842841867 -1.340455647  0.515324118 
##           97           98           99          100          101          102 
## -0.350907061 -1.553911271  2.107398197 -0.225288176 -0.306135434 -0.081864414 
##          103          104          105          106          107          108 
## -0.070619349  1.339898013  0.138093209  1.492829070 -0.162013768  0.978470357 
##          109          110          111          112          113          114 
## -1.036875243 -0.045066168 -1.003498089 -0.456726889 -0.839987619  1.616026327 
##          115          116          117          118          119          120 
##  0.484872217  2.647906417 -0.742901314 -0.335045402  0.255089902  0.801646196 
##          121          122          123          124          125          126 
## -1.051074215 -0.881378307 -1.471015917 -0.302753014 -0.893414740  1.188327728 
##          127          128          129          130          131          132 
##  0.677452589 -0.105081376 -0.847771130 -0.998938917 -0.342736167 -0.531438001 
##          133          134          135          136          137          138 
##  1.039576482 -1.302988033 -0.307992370  0.066143636 -0.245266398 -1.158784087 
##          139          140          141          142          143          144 
##  2.244246263  1.082728508  0.109948026  0.365029372  0.493482452 -0.524326060 
##          145          146          147          148          149          150 
##  1.378652101  1.162801875 -0.378126543 -0.180533843 -0.940081602 -0.648742302 
##          151          152          153          154          155          156 
## -0.046148223 -0.906303190 -0.505782252 -0.409229209  2.795142968  0.498089615 
##          157          158          159          160          161          162 
## -0.844489921  0.466728715  1.386926452 -0.340582662 -0.980967729  0.139502794 
##          163          164          165          166          167          168 
## -0.378126543 -0.228738408 -1.244067319  0.466429361  2.300394395  1.578832541 
##          169          170          171          172          173          174 
##  1.548299015 -0.592071319  1.376472183 -0.365839984 -0.419396344  0.130123809 
##          175          176          177          178          179          180 
## -1.376503150 -0.679764931  2.572639054 -0.240963321 -0.835449754  0.213186882 
##          181          182          183          184          185          186 
##  2.062233796 -0.356889643  1.861742547  0.139195045 -1.143529805 -1.738633035 
##          187          188          189          190          191          192 
## -0.845247868 -1.135600689 -0.592750134  0.353666938  0.316534951 -0.138911000 
##          193          194          195          196          197          198 
## -1.238555874 -0.744129475 -0.452381280 -0.095417884  0.378235209  0.264514081 
##          199          200          201          202          203          204 
##  0.802443212  1.520457089 -1.102380916 -0.304290462 -1.165803802 -0.321204178 
##          205          206          207          208          209          210 
##  0.061530103 -0.604934220 -0.095544749 -0.631583916 -0.147881451 -0.770237847 
##          211          212          213          214          215          216 
##  0.029542002  0.213230744  0.294708535  2.086601093 -0.771466965  2.471718045 
##          217          218          219          220          221          222 
##  1.168334864 -1.380204810  0.065655091  1.372043354  1.632177038 -1.550903839 
##          223          224          225          226          227          228 
##  0.176898180  2.600130853  0.733418194 -0.246063114  0.601224033 -0.351894252 
##          229          230          231          232          233          234 
##  0.311285591 -0.173958351 -0.714050616  1.413550550 -0.381512946 -0.507561814 
##          235          236          237          238          239          240 
##  0.020929201 -0.428849687 -1.127063927  2.120148713 -0.733384415 -0.286457512 
##          241          242          243          244          245          246 
##  1.647290201 -0.106927016 -0.375048196  1.495354445 -0.718653086 -0.214838205 
##          247          248          249          250          251          252 
## -0.888167291  0.264078000  0.610564401 -0.396363820 -0.345505067 -0.374740371 
##          253          254          255          256          257          258 
## -0.188097914  0.122876419 -0.919057318  0.816156589 -1.222029728 -0.780072086 
##          259          260          261          262          263          264 
## -0.722949176  0.713256368 -0.047379481  1.064663888  0.521045148 -0.071542711 
##          265          266          267          268          269          270 
## -0.712816678  0.087058539 -0.569717156 -0.365814265  0.031387555 -0.924308077 
##          271          272          273          274          275          276 
##  1.239173509  1.455180954 -1.254481664  1.456120958  1.474936624  1.000150785 
##          277          278          279          280          281          282 
##  1.344990193  0.539654082 -0.845922544 -1.402076420  0.721938958 -0.210188669 
##          283          284          285          286          287          288 
## -0.720187353 -0.398203103  0.310983740  1.525698076 -2.179862277 -0.692272004 
##          289          290 
## -0.690738677  0.032615576

There appears to be a few standardized residual values, from my model in question 1, that is greater than 2.5 or less than -2.5. It is at index 92, 116, 155, 177, and 224.

#Question 6

newdata=data.frame(weight_whole = 1.23)
predict.lm(mod1, newdata, interval = "confidence", level = 0.95)
##       fit      lwr      upr
## 1 2.40002 2.372435 2.427604
predict.lm(mod1, newdata, interval = "prediction", level = 0.95)
##       fit      lwr      upr
## 1 2.40002 1.959411 2.840628

#Question 7 Using subsets, the best model uses variables weight_shell, weight_shucked, weight_whole, and height.

#Question 8

library(mosaic)
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: lattice
## Loading required package: ggformula
## Loading required package: ggplot2
## Loading required package: ggstance
## 
## Attaching package: 'ggstance'
## The following objects are masked from 'package:ggplot2':
## 
##     geom_errorbarh, GeomErrorbarh
## 
## New to ggformula?  Try the tutorials: 
##  learnr::run_tutorial("introduction", package = "ggformula")
##  learnr::run_tutorial("refining", package = "ggformula")
## Loading required package: mosaicData
## Loading required package: Matrix
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Note: If you use the Matrix package, be sure to load it BEFORE loading mosaic.
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
library(Stat2Data)
library(readr)
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following objects are masked from 'package:mosaic':
## 
##     deltaMethod, logit
## The following object is masked from 'package:dplyr':
## 
##     recode
library(corrplot)
## corrplot 0.84 loaded
mod3 = sample_n(subset(abalone, sex  == "F"), 135)
mod4=sample_n(subset(abalone, sex  == "M"), 135)
summary(mod3)
##      sex                length          diameter          height      
##  Length:135         Min.   :0.3500   Min.   :0.2650   Min.   :0.0900  
##  Class :character   1st Qu.:0.5250   1st Qu.:0.4050   1st Qu.:0.1350  
##  Mode  :character   Median :0.5850   Median :0.4650   Median :0.1550  
##                     Mean   :0.5764   Mean   :0.4539   Mean   :0.1561  
##                     3rd Qu.:0.6400   3rd Qu.:0.5050   3rd Qu.:0.1800  
##                     Max.   :0.7800   Max.   :0.6300   Max.   :0.2500  
##   weight_whole    weight_shucked   weight_viscera    weight_shell   
##  Min.   :0.1855   Min.   :0.0745   Min.   :0.0415   Min.   :0.0600  
##  1st Qu.:0.7070   1st Qu.:0.2913   1st Qu.:0.1578   1st Qu.:0.2000  
##  Median :1.0645   Median :0.4410   Median :0.2295   Median :0.2985  
##  Mean   :1.0449   Mean   :0.4489   Mean   :0.2277   Mean   :0.3004  
##  3rd Qu.:1.2797   3rd Qu.:0.5563   3rd Qu.:0.2720   3rd Qu.:0.3750  
##  Max.   :2.6570   Max.   :1.4880   Max.   :0.5185   Max.   :0.6240  
##      rings      
##  Min.   : 7.00  
##  1st Qu.: 9.00  
##  Median :11.00  
##  Mean   :11.13  
##  3rd Qu.:12.00  
##  Max.   :19.00
summary(mod4)
##      sex                length          diameter          height      
##  Length:135         Min.   :0.3500   Min.   :0.2550   Min.   :0.0800  
##  Class :character   1st Qu.:0.5350   1st Qu.:0.4200   1st Qu.:0.1400  
##  Mode  :character   Median :0.5850   Median :0.4650   Median :0.1550  
##                     Mean   :0.5853   Mean   :0.4603   Mean   :0.1611  
##                     3rd Qu.:0.6350   3rd Qu.:0.5100   3rd Qu.:0.1800  
##                     Max.   :0.7750   Max.   :0.6300   Max.   :0.5150  
##   weight_whole    weight_shucked   weight_viscera    weight_shell   
##  Min.   :0.2145   Min.   :0.1000   Min.   :0.0465   Min.   :0.0600  
##  1st Qu.:0.8145   1st Qu.:0.3197   1st Qu.:0.1740   1st Qu.:0.2300  
##  Median :1.0060   Median :0.4460   Median :0.2145   Median :0.2900  
##  Mean   :1.0839   Mean   :0.4712   Mean   :0.2365   Mean   :0.3093  
##  3rd Qu.:1.3365   3rd Qu.:0.5777   3rd Qu.:0.2908   3rd Qu.:0.3745  
##  Max.   :2.7795   Max.   :1.3510   Max.   :0.7600   Max.   :0.7250  
##      rings      
##  Min.   : 7.00  
##  1st Qu.: 9.00  
##  Median :10.00  
##  Mean   :11.13  
##  3rd Qu.:12.00  
##  Max.   :19.00