I will estimate market risk with VaR model with R. I used Dell stock price.

Data and packages

## [1] "DELL"
##            DELL.Open DELL.High DELL.Low DELL.Close DELL.Volume DELL.Adjusted
## 2020-02-07     52.50     52.50    51.00      51.62     4722800         51.62
## 2020-02-10     51.00     52.17    50.56      52.11     2700000         52.11
## 2020-02-11     52.10     53.10    52.00      52.26     4402400         52.26
## 2020-02-12     52.73     53.52    52.58      53.30     3484100         53.30
## 2020-02-13     51.95     52.83    51.43      52.55     3426500         52.55
## 2020-02-14     52.95     53.55    52.63      52.88     2107600         52.88
## An 'xts' object on 2016-08-17/2020-02-14 containing:
##   Data: num [1:880, 1:6] 24.1 24.4 23.6 23.8 24.2 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:6] "DELL.Open" "DELL.High" "DELL.Low" "DELL.Close" ...
##   Indexed by objects of class: [Date] TZ: UTC
##   xts Attributes:  
## List of 2
##  $ src    : chr "yahoo"
##  $ updated: POSIXct[1:1], format: "2020-02-15 10:55:11"

Check normality

##              DELL.Close DELL.Close.1
## 2016-08-18 -0.005813976 -0.005830943
## 2016-08-19  0.017543800  0.017391684
## 2016-08-22  0.003448339  0.003442407
## 2016-08-23  0.030927780  0.030459154
## 2016-08-24  0.013333377  0.013245270
## 2016-08-25 -0.004166672 -0.004175376
##                      ra           rg
## 2016-08-18 -0.005813976 -0.005830943
## 2016-08-19  0.017543800  0.017391684
## 2016-08-22  0.003448339  0.003442407
## 2016-08-23  0.030927780  0.030459154
## 2016-08-24  0.013333377  0.013245270
## 2016-08-25 -0.004166672 -0.004175376
##   method       return
## 1     ra -0.005813976
## 2     ra  0.017543800
## 3     ra  0.003448339
## 4     ra  0.030927780
## 5     ra  0.013333377
## 6     ra -0.004166672

## 
##  Jarque Bera Test
## 
## data:  ra
## X-squared = 17967, df = 2, p-value < 2.2e-16
## 
##  Jarque Bera Test
## 
## data:  rg
## X-squared = 34260, df = 2, p-value < 2.2e-16

Arithmetic return

## [1] -0.03076105

Geometric return

## [1] -0.0316285

Source: