#Analisis de regresion lineal
#datos de pacientes
# peso, edad, grasa
grasas = read.table("http://verso.mat.uam.es/~joser.berrendero/datos/EdadPesoGrasas.txt", header=TRUE)
#para conocer el nombre de las variables
names(grasas)
## [1] "peso" "edad" "grasas"
#regresion lineal simple para h0
pairs(grasas)

#tabla de correlacion
cor(grasas)
## peso edad grasas
## peso 1.0000000 0.2400133 0.2652935
## edad 0.2400133 1.0000000 0.8373534
## grasas 0.2652935 0.8373534 1.0000000
#recta de minimos
#cuadrados
regresion = lm(grasas ~ edad, data=grasas)
summary(regresion)
##
## Call:
## lm(formula = grasas ~ edad, data = grasas)
##
## Residuals:
## Min 1Q Median 3Q Max
## -63.478 -26.816 -3.854 28.315 90.881
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 102.5751 29.6376 3.461 0.00212 **
## edad 5.3207 0.7243 7.346 1.79e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 43.46 on 23 degrees of freedom
## Multiple R-squared: 0.7012, Adjusted R-squared: 0.6882
## F-statistic: 53.96 on 1 and 23 DF, p-value: 1.794e-07
#Grafico del ajuste lineal
plot (grasas$edad, grasas$grasas, xlab="Edad", ylab = "Grasas")
abline(regresion)

#calculo de predicciones
nuevas.edades = data.frame(edad=seq(30,50))
predict(regresion, nuevas.edades)
## 1 2 3 4 5 6 7 8
## 262.1954 267.5161 272.8368 278.1575 283.4781 288.7988 294.1195 299.4402
## 9 10 11 12 13 14 15 16
## 304.7608 310.0815 315.4022 320.7229 326.0435 331.3642 336.6849 342.0056
## 17 18 19 20 21
## 347.3263 352.6469 357.9676 363.2883 368.6090
#intervalo de confianza
confint(regresion)
## 2.5 % 97.5 %
## (Intercept) 41.265155 163.885130
## edad 3.822367 6.818986