## # A tibble: 87 x 13
##    name  height  mass hair_color skin_color eye_color birth_year gender
##    <chr>  <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> 
##  1 Luke…    172    77 blond      fair       blue            19   male  
##  2 C-3PO    167    75 <NA>       gold       yellow         112   <NA>  
##  3 R2-D2     96    32 <NA>       white, bl… red             33   <NA>  
##  4 Dart…    202   136 none       white      yellow          41.9 male  
##  5 Leia…    150    49 brown      light      brown           19   female
##  6 Owen…    178   120 brown, gr… light      blue            52   male  
##  7 Beru…    165    75 brown      light      blue            47   female
##  8 R5-D4     97    32 <NA>       white, red red             NA   <NA>  
##  9 Bigg…    183    84 black      light      brown           24   male  
## 10 Obi-…    182    77 auburn, w… fair       blue-gray       57   male  
## # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
## #   films <list>, vehicles <list>, starships <list>

Q1 select Keep the variables name, eye_color, and films.

## # A tibble: 87 x 3
##    name               eye_color films    
##    <chr>              <chr>     <list>   
##  1 Luke Skywalker     blue      <chr [5]>
##  2 C-3PO              yellow    <chr [6]>
##  3 R2-D2              red       <chr [7]>
##  4 Darth Vader        yellow    <chr [4]>
##  5 Leia Organa        brown     <chr [5]>
##  6 Owen Lars          blue      <chr [3]>
##  7 Beru Whitesun lars blue      <chr [3]>
##  8 R5-D4              red       <chr [1]>
##  9 Biggs Darklighter  brown     <chr [1]>
## 10 Obi-Wan Kenobi     blue-gray <chr [6]>
## # … with 77 more rows

Q2 filter select blonds.

## # A tibble: 4 x 13
##   name  height  mass hair_color skin_color eye_color birth_year gender homeworld
##   <chr>  <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr>  <chr>    
## 1 Luke…    172    77 blond      fair       blue            19   male   Tatooine 
## 2 Anak…    188    84 blond      fair       blue            41.9 male   Tatooine 
## 3 Fini…    170    NA blond      fair       blue            91   male   Coruscant
## 4 Zam …    168    55 blonde     fair, gre… yellow          NA   female Zolan    
## # … with 4 more variables: species <chr>, films <list>, vehicles <list>,
## #   starships <list>

Q3 filter select female blonds.

## # A tibble: 1 x 13
##   name  height  mass hair_color skin_color eye_color birth_year gender homeworld
##   <chr>  <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr>  <chr>    
## 1 Zam …    168    55 blonde     fair, gre… yellow            NA female Zolan    
## # … with 4 more variables: species <chr>, films <list>, vehicles <list>,
## #   starships <list>

Q4 mutate Convert height in centimeters to feet.

## # A tibble: 87 x 13
##    name  height  mass hair_color skin_color eye_color birth_year gender
##    <chr>  <dbl> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> 
##  1 Luke…   5.64    77 blond      fair       blue            19   male  
##  2 C-3PO   5.48    75 <NA>       gold       yellow         112   <NA>  
##  3 R2-D2   3.15    32 <NA>       white, bl… red             33   <NA>  
##  4 Dart…   6.63   136 none       white      yellow          41.9 male  
##  5 Leia…   4.92    49 brown      light      brown           19   female
##  6 Owen…   5.84   120 brown, gr… light      blue            52   male  
##  7 Beru…   5.41    75 brown      light      blue            47   female
##  8 R5-D4   3.18    32 <NA>       white, red red             NA   <NA>  
##  9 Bigg…   6.00    84 black      light      brown           24   male  
## 10 Obi-…   5.97    77 auburn, w… fair       blue-gray       57   male  
## # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
## #   films <list>, vehicles <list>, starships <list>

Q5 summarize Calculate mean height in feet

## # A tibble: 1 x 1
##   mean_ht
##     <dbl>
## 1    5.72

Q6 group_by and summarize Calculate mean height by gender.

## # A tibble: 5 x 2
##   gender        mean_ht
##   <chr>           <dbl>
## 1 female           5.43
## 2 hermaphrodite    5.74
## 3 male             5.88
## 4 none             6.56
## 5 <NA>             3.94

Q7 spread Convert the dataset, mean_height, to a wide dataset.

## # A tibble: 1 x 5
##   female hermaphrodite  male  none `<NA>`
##    <dbl>         <dbl> <dbl> <dbl>  <dbl>
## 1   5.43          5.74  5.88  6.56   3.94