library(table1)
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
library(explore)
library(ggplot2)
library(GGally)
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
##
## Attaching package: 'GGally'
## The following object is masked from 'package:explore':
##
## rescale01
library(gridExtra)
This dataset includes the following variables: mpg: miles per gallon cyl: number of cylinders disp: displacement, a measure of engine power hp: horsepower wt: weight of each car (lb/1000) gear: number of forward gears
data(mtcars)
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
temp = mtcars[, c("mpg", "cyl", "disp", "wt", "gear")]
head(temp)
## mpg cyl disp wt gear
## Mazda RX4 21.0 6 160 2.620 4
## Mazda RX4 Wag 21.0 6 160 2.875 4
## Datsun 710 22.8 4 108 2.320 4
## Hornet 4 Drive 21.4 6 258 3.215 3
## Hornet Sportabout 18.7 8 360 3.440 3
## Valiant 18.1 6 225 3.460 3
table1(~mpg + cyl + disp + hp + wt, data=mtcars)
Overall (n=32) |
|
---|---|
mpg | |
Mean (SD) | 20.1 (6.03) |
Median [Min, Max] | 19.2 [10.4, 33.9] |
cyl | |
Mean (SD) | 6.19 (1.79) |
Median [Min, Max] | 6.00 [4.00, 8.00] |
disp | |
Mean (SD) | 231 (124) |
Median [Min, Max] | 196 [71.1, 472] |
hp | |
Mean (SD) | 147 (68.6) |
Median [Min, Max] | 123 [52.0, 335] |
wt | |
Mean (SD) | 3.22 (0.978) |
Median [Min, Max] | 3.33 [1.51, 5.42] |
table1(~mpg + factor(cyl) + disp + hp + wt | gear, data=mtcars)
## Warning in table1.formula(~mpg + factor(cyl) + disp + hp + wt | gear, data
## = mtcars): Terms to the right of '|' in formula 'x' define table columns
## and are expected to be factors with meaningful labels.
3 (n=15) |
4 (n=12) |
5 (n=5) |
Overall (n=32) |
|
---|---|---|---|---|
mpg | ||||
Mean (SD) | 16.1 (3.37) | 24.5 (5.28) | 21.4 (6.66) | 20.1 (6.03) |
Median [Min, Max] | 15.5 [10.4, 21.5] | 22.8 [17.8, 33.9] | 19.7 [15.0, 30.4] | 19.2 [10.4, 33.9] |
factor(cyl) | ||||
4 | 1 (6.7%) | 8 (66.7%) | 2 (40.0%) | 11 (34.4%) |
6 | 2 (13.3%) | 4 (33.3%) | 1 (20.0%) | 7 (21.9%) |
8 | 12 (80.0%) | 0 (0%) | 2 (40.0%) | 14 (43.8%) |
disp | ||||
Mean (SD) | 326 (94.9) | 123 (38.9) | 202 (115) | 231 (124) |
Median [Min, Max] | 318 [120, 472] | 131 [71.1, 168] | 145 [95.1, 351] | 196 [71.1, 472] |
hp | ||||
Mean (SD) | 176 (47.7) | 89.5 (25.9) | 196 (103) | 147 (68.6) |
Median [Min, Max] | 180 [97.0, 245] | 94.0 [52.0, 123] | 175 [91.0, 335] | 123 [52.0, 335] |
wt | ||||
Mean (SD) | 3.89 (0.833) | 2.62 (0.633) | 2.63 (0.819) | 3.22 (0.978) |
Median [Min, Max] | 3.73 [2.47, 5.42] | 2.70 [1.62, 3.44] | 2.77 [1.51, 3.57] | 3.33 [1.51, 5.42] |
explore_all(mtcars)
explore_all(temp, target=gear)
ggpairs(mtcars)
p1 = ggplot(data=mtcars, aes(x=mpg, col=mpg)) + geom_histogram()
p2 = ggplot(data=mtcars, aes(x=mpg, col=mpg)) + geom_histogram(col="white", fill="blue")
p3 = ggplot(data=mtcars, aes(x=mpg, col=mpg)) + geom_histogram(aes(y=..density..), col="white", fill="blue") + geom_density(col="red")
grid.arrange(p1, p2, p3, ncol=3)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
p = ggplot(data=mtcars, aes(x=disp, y=mpg))
p1 = p + geom_point()
p2 = p + geom_point() + geom_smooth()
p3 = p + geom_point() + geom_smooth(method="lm", formula=y~x+I(x^2))
grid.arrange(p1, p2, p3, ncol=3)
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'