library(tidycensus)
library(tidyverse)
library(sf)
library(ggplot2)
v15_Profile <- load_variables(2015 , "acs5/profile", cache = TRUE) #demographic profile tables
View(v15_Profile)
#Search for variables by keywords in the label
# v15_Profile[grep(x = v15_Profile$label, "POVERTY"), c("name", "label")]
# v15_Profile[grep(x = v15_Profile$label, "Built 2000 to 2009"), c("name", "label")]
sa_acs<-get_acs(geography = "tract",
state="TX",
county = c("Bexar"),
year = 2017,
variables=c( "DP05_0001E",
"DP03_0062E") ,
geometry = T, output = "wide")
#create a county FIPS code - 5 digit
sa_acs$county<-substr(sa_acs$GEOID, 1, 5)
#rename variables and filter missing cases
sa_acs2<-sa_acs%>%
mutate(totpop= DP05_0001E, medianhi=DP03_0062E) %>%
# st_transform(crs = 102740)%>%
na.omit()
#change the directory
sf::st_write(sa_acs2,dsn="C:/Users/sarah/Documents",layer="sa_tract_dp03_R", driver="ESRI Shapefile", delete_layer=T, update=T)
library(classInt)
library(patchwork)
library(dplyr)
medianhi_map<-sa_acs2 %>%
mutate(jmedianhi = cut(medianhi,breaks=data.frame(classIntervals(var=sa_acs2$medianhi, n=5, style="pretty")[2])[,1], include.lowest = T))
library(ggsn)
# p1<-ggplot(medianhi_map, aes(fill = cmedianhi, color = cmedianhi)) +
# geom_sf() +
# ggtitle("Percent Estimate for the Median Household Income",
# subtitle = "Bexar County Texas, 2017 - Quantile Breaks")+
# scale_fill_brewer(palette = "Reds") +
# scale_color_brewer(palette = "Reds")+
# theme(axis.text.x = element_blank(), axis.text.y = element_blank())+
# north(medianhi_map)+
# scalebar(medianhi_map, location="bottomleft", dist=5, transform = T,dist_unit = "km", model="WGS84", st.size =2 )
# p1
p2<-ggplot(medianhi_map, aes(fill = jmedianhi, color = jmedianhi)) +
geom_sf() +
ggtitle("Percent Estimate for the Median Household Income",
subtitle = "Bexar County Texas, 2017 - Pretty Breaks")+
scale_fill_brewer(palette = "Oranges") +
scale_color_brewer(palette = "Oranges")+
theme(axis.text.x = element_blank(), axis.text.y = element_blank())+
north(medianhi_map)+
scalebar(medianhi_map, location="bottomleft", dist=5, transform = T,dist_unit = "km", model="WGS84", st.size =2)
p2
#ggsave(filename="C:/Users/sarah/Google Drive/MSc Demography/Spring 2020/GIS 5093/gis_class/Homework 1/lab1map1.png")
library(mapview)
library(RColorBrewer)
pal <- colorRampPalette(brewer.pal(6, "Oranges")) #set colors
mapview(medianhi_map["jmedianhi"], col.regions=pal, legend=T,map.types="OpenStreetMap", layer.name="% African American")