Problem C10 page 388
Find the charactertistic polynomial of the matrix
library(knitr)
library(pracma)
A = matrix(c (1,2,3,4), nrow=2, byrow=T)
print(A)
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
charpoly(A)
## [1] 1 -5 -2
This gives us the characteristic polynomial as below:
\[{ PA(x)=λ}^{ 2 }-5{ λ } -2\]
We will find the characteristic polynomial of a 2X2 matrix
\[A=\begin{vmatrix} 1 & 2 \\ 3 & 4\end{vmatrix}\]
We must solve the following to get eigenvalues
\[det(\begin{vmatrix} λ & 0 \\ 0 & λ \end{vmatrix}-\begin{vmatrix} 1 & 2\\ 3 & 4\end{vmatrix})\ =0\]
Subtracting gives us
\[det(\begin{vmatrix} λ-1 & -2 \\ -3 & λ-4\end{vmatrix})= 0\]
Next step is to solve for the determinant using det(A)=ad-bc
\[(λ-1)(λ-4)- (-3)(-2)=0\]
\[λ(λ-4)-1(λ-4)-6=0\] \[λ^2-4λ-λ+4-6=0\] \[λ^2-5λ-2=0\]
This is the same equation as the one given by the coordinated from charpoly function.