\(A = \left[ \begin{array}{cccc} 1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \\ 3 & 1 & 0 & 1 \\ \end{array} \right] \\ \)
The characteristic polynomial of square matrix \(A\) is defined as \(f_A(\lambda)=det(A−\lambda I)\)
\((A−\lambda I)\) = \(A = \left[ \begin{array}{cccc} 1 & 2 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \\ 3 & 1 & 0 & 1 \\ \end{array} \right] \\ \) - \(\lambda\) \(\left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right] \\ \) = \(\left[ \begin{array}{cccc} 1-\lambda & 2 & 1 & 0 \\ 1 & -\lambda & 1 & 0 \\ 2 & 1 & 1-\lambda & 0 \\ 3 & 1 & 0 & 1-\lambda \\ \end{array} \right] \\ \)
Therefore \(det(A−\lambda I) = det\) \(\left[ \begin{array}{cccc} 1-\lambda & 2 & 1 & 0 \\ 1 & -\lambda & 1 & 0 \\ 2 & 1 & 1-\lambda & 0 \\ 3 & 1 & 0 & 1-\lambda \\ \end{array} \right] \\ \)
After reducing the matrix to row echelon and simplifyin all expression, we’ll obtain:
\(det(A−\lambda I) = \lambda^4-3\lambda^3-2\lambda^2+2\lambda+2\)
Hence: \(f_A(\lambda)= \lambda^4-3\lambda^3-2\lambda^2+2\lambda+2\)
library(pracma)
A <- matrix(data = c(1,2,1,0,
1,0,1,0,
2,1,1,0,
3,1,0,1), nrow=4, byrow=TRUE)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 1 0
## [2,] 1 0 1 0
## [3,] 2 1 1 0
## [4,] 3 1 0 1
#determinind the characteristic polynomial of A
charpoly(A, info = FALSE)
## [1] 1 -3 -2 2 2
The result is interpreted as: \(f_A(\lambda)= \lambda^4-3\lambda^3-2\lambda^2+2\lambda+2\)