library(tidyverse)
## -- Attaching packages -------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1     v purrr   0.3.3
## v tibble  2.1.3     v dplyr   0.8.4
## v tidyr   1.0.2     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts ----------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

EXERCISE 10.5

How can you tell if an object is a tibble? (Hint: try printing mtcars, which is a regular data frame).

as_tibble(mtcars)
## # A tibble: 32 x 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
##  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
##  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
##  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
##  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
##  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
##  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
##  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
##  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
## 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
## # ... with 22 more rows
print(mtcars)
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
is_tibble(mtcars)
## [1] FALSE
is_tibble(as_tibble(mtcars))
## [1] TRUE

Compare and contrast the following operations on a data.frame and equivalent tibble. What is different? Why might the default data frame behaviours cause you frustration?

df <- data.frame(abc = 1, xyz = "a")
df$x
## [1] a
## Levels: a
df[, "xyz"]
## [1] a
## Levels: a
df[, c("abc", "xyz")]
##   abc xyz
## 1   1   a
tb1 <- as_tibble(df)
tb1$x
## Warning: Unknown or uninitialised column: 'x'.
## NULL
tb1[, "xyz"]
## # A tibble: 1 x 1
##   xyz  
##   <fct>
## 1 a
tb1[, c("abc", "xyz")]
## # A tibble: 1 x 2
##     abc xyz  
##   <dbl> <fct>
## 1     1 a

If you have the name of a variable stored in an object, e.g. var <- “mpg”, how can you extract the reference variable from a tibble?

You can use the double bracket, like df[[var]]. You cannot use the dollar sign, because df$var would look for a column named var.

Practice referring to non-syntactic names in the following data frame by:

annoying <- tibble(
  `1` = 1:10,
  `2` = `1` * 2 + rnorm(length(`1`))
)

Extracting the variable called 1.

annoying[["1"]]
##  [1]  1  2  3  4  5  6  7  8  9 10

Plotting a scatterplot of 1 vs 2.

ggplot(data=annoying, mapping=aes(x=`1`, y =`2`))+
  geom_point()

Creating a new column called 3 which is 2 divided by 1.

annoying <- mutate(annoying, `3` = `2` / `1`)
glimpse(annoying)
## Observations: 10
## Variables: 3
## $ `1` <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## $ `2` <dbl> 2.363819, 3.968948, 6.105204, 9.498327, 9.797728, 10.046005, 13...
## $ `3` <dbl> 2.363819, 1.984474, 2.035068, 2.374582, 1.959546, 1.674334, 1.8...

Renaming the columns to one, two and three.

annoying <- rename(annoying, one = `1`, two = `2`, three = `3`)
glimpse(annoying)
## Observations: 10
## Variables: 3
## $ one   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## $ two   <dbl> 2.363819, 3.968948, 6.105204, 9.498327, 9.797728, 10.046005, ...
## $ three <dbl> 2.363819, 1.984474, 2.035068, 2.374582, 1.959546, 1.674334, 1...

What does tibble::enframe() do? When might you use it?

enframe(c(a=1,b=2,c=3))
## # A tibble: 3 x 2
##   name  value
##   <chr> <dbl>
## 1 a         1
## 2 b         2
## 3 c         3

converts named vectors to a data frame with names and values

What option controls how many additional column names are printed at the footer of a tibble? The help page for the print() method of tibble objects is discussed in ?print.tbl.

The n_extra argument determines the number of extra columns to print information for.