fileURL <- "http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
download.file(fileURL, destfile="breast-cancer-wisconsin.data", method="curl")
df <- read.table("breast-cancer-wisconsin.data", na.strings = "?", sep=",")
str(df)
## 'data.frame': 699 obs. of 11 variables:
## $ V1 : int 1000025 1002945 1015425 1016277 1017023 1017122 1018099 1018561 1033078 1033078 ...
## $ V2 : int 5 5 3 6 4 8 1 2 2 4 ...
## $ V3 : int 1 4 1 8 1 10 1 1 1 2 ...
## $ V4 : int 1 4 1 8 1 10 1 2 1 1 ...
## $ V5 : int 1 5 1 1 3 8 1 1 1 1 ...
## $ V6 : int 2 7 2 3 2 7 2 2 2 2 ...
## $ V7 : int 1 10 2 4 1 10 10 1 1 1 ...
## $ V8 : int 3 3 3 3 3 9 3 3 1 2 ...
## $ V9 : int 1 2 1 7 1 7 1 1 1 1 ...
## $ V10: int 1 1 1 1 1 1 1 1 5 1 ...
## $ V11: int 2 2 2 2 2 4 2 2 2 2 ...
##“UniformityCellSize”, ##“UniformityCellShape”, ##“MarginalAdhesion”, ##“SingleEpithelialCellSize”, ##“BareNuclei”, ##“BlandChromatin”, ##“NormalNucleoli”, ##“Mitoses”, ##“Class”) # These names are displayed in the tree to facilitate semantic interpretation ## Installing Dataexplorer, ggplot2 and data.table libraries
library(DataExplorer)
library(ggplot2)
library(data.table)
df <- df [ ,-1]
df
## V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
## 1 5 1 1 1 2 1 3 1 1 2
## 2 5 4 4 5 7 10 3 2 1 2
## 3 3 1 1 1 2 2 3 1 1 2
## 4 6 8 8 1 3 4 3 7 1 2
## 5 4 1 1 3 2 1 3 1 1 2
## 6 8 10 10 8 7 10 9 7 1 4
## 7 1 1 1 1 2 10 3 1 1 2
## 8 2 1 2 1 2 1 3 1 1 2
## 9 2 1 1 1 2 1 1 1 5 2
## 10 4 2 1 1 2 1 2 1 1 2
## 11 1 1 1 1 1 1 3 1 1 2
## 12 2 1 1 1 2 1 2 1 1 2
## 13 5 3 3 3 2 3 4 4 1 4
## 14 1 1 1 1 2 3 3 1 1 2
## 15 8 7 5 10 7 9 5 5 4 4
## 16 7 4 6 4 6 1 4 3 1 4
## 17 4 1 1 1 2 1 2 1 1 2
## 18 4 1 1 1 2 1 3 1 1 2
## 19 10 7 7 6 4 10 4 1 2 4
## 20 6 1 1 1 2 1 3 1 1 2
## 21 7 3 2 10 5 10 5 4 4 4
## 22 10 5 5 3 6 7 7 10 1 4
## 23 3 1 1 1 2 1 2 1 1 2
## 24 8 4 5 1 2 NA 7 3 1 4
## 25 1 1 1 1 2 1 3 1 1 2
## 26 5 2 3 4 2 7 3 6 1 4
## 27 3 2 1 1 1 1 2 1 1 2
## 28 5 1 1 1 2 1 2 1 1 2
## 29 2 1 1 1 2 1 2 1 1 2
## 30 1 1 3 1 2 1 1 1 1 2
## 31 3 1 1 1 1 1 2 1 1 2
## 32 2 1 1 1 2 1 3 1 1 2
## 33 10 7 7 3 8 5 7 4 3 4
## 34 2 1 1 2 2 1 3 1 1 2
## 35 3 1 2 1 2 1 2 1 1 2
## 36 2 1 1 1 2 1 2 1 1 2
## 37 10 10 10 8 6 1 8 9 1 4
## 38 6 2 1 1 1 1 7 1 1 2
## 39 5 4 4 9 2 10 5 6 1 4
## 40 2 5 3 3 6 7 7 5 1 4
## 41 6 6 6 9 6 NA 7 8 1 2
## 42 10 4 3 1 3 3 6 5 2 4
## 43 6 10 10 2 8 10 7 3 3 4
## 44 5 6 5 6 10 1 3 1 1 4
## 45 10 10 10 4 8 1 8 10 1 4
## 46 1 1 1 1 2 1 2 1 2 2
## 47 3 7 7 4 4 9 4 8 1 4
## 48 1 1 1 1 2 1 2 1 1 2
## 49 4 1 1 3 2 1 3 1 1 2
## 50 7 8 7 2 4 8 3 8 2 4
## 51 9 5 8 1 2 3 2 1 5 4
## 52 5 3 3 4 2 4 3 4 1 4
## 53 10 3 6 2 3 5 4 10 2 4
## 54 5 5 5 8 10 8 7 3 7 4
## 55 10 5 5 6 8 8 7 1 1 4
## 56 10 6 6 3 4 5 3 6 1 4
## 57 8 10 10 1 3 6 3 9 1 4
## 58 8 2 4 1 5 1 5 4 4 4
## 59 5 2 3 1 6 10 5 1 1 4
## 60 9 5 5 2 2 2 5 1 1 4
## 61 5 3 5 5 3 3 4 10 1 4
## 62 1 1 1 1 2 2 2 1 1 2
## 63 9 10 10 1 10 8 3 3 1 4
## 64 6 3 4 1 5 2 3 9 1 4
## 65 1 1 1 1 2 1 2 1 1 2
## 66 10 4 2 1 3 2 4 3 10 4
## 67 4 1 1 1 2 1 3 1 1 2
## 68 5 3 4 1 8 10 4 9 1 4
## 69 8 3 8 3 4 9 8 9 8 4
## 70 1 1 1 1 2 1 3 2 1 2
## 71 5 1 3 1 2 1 2 1 1 2
## 72 6 10 2 8 10 2 7 8 10 4
## 73 1 3 3 2 2 1 7 2 1 2
## 74 9 4 5 10 6 10 4 8 1 4
## 75 10 6 4 1 3 4 3 2 3 4
## 76 1 1 2 1 2 2 4 2 1 2
## 77 1 1 4 1 2 1 2 1 1 2
## 78 5 3 1 2 2 1 2 1 1 2
## 79 3 1 1 1 2 3 3 1 1 2
## 80 2 1 1 1 3 1 2 1 1 2
## 81 2 2 2 1 1 1 7 1 1 2
## 82 4 1 1 2 2 1 2 1 1 2
## 83 5 2 1 1 2 1 3 1 1 2
## 84 3 1 1 1 2 2 7 1 1 2
## 85 3 5 7 8 8 9 7 10 7 4
## 86 5 10 6 1 10 4 4 10 10 4
## 87 3 3 6 4 5 8 4 4 1 4
## 88 3 6 6 6 5 10 6 8 3 4
## 89 4 1 1 1 2 1 3 1 1 2
## 90 2 1 1 2 3 1 2 1 1 2
## 91 1 1 1 1 2 1 3 1 1 2
## 92 3 1 1 2 2 1 1 1 1 2
## 93 4 1 1 1 2 1 3 1 1 2
## 94 1 1 1 1 2 1 2 1 1 2
## 95 2 1 1 1 2 1 3 1 1 2
## 96 1 1 1 1 2 1 3 1 1 2
## 97 2 1 1 2 2 1 1 1 1 2
## 98 5 1 1 1 2 1 3 1 1 2
## 99 9 6 9 2 10 6 2 9 10 4
## 100 7 5 6 10 5 10 7 9 4 4
## 101 10 3 5 1 10 5 3 10 2 4
## 102 2 3 4 4 2 5 2 5 1 4
## 103 4 1 2 1 2 1 3 1 1 2
## 104 8 2 3 1 6 3 7 1 1 4
## 105 10 10 10 10 10 1 8 8 8 4
## 106 7 3 4 4 3 3 3 2 7 4
## 107 10 10 10 8 2 10 4 1 1 4
## 108 1 6 8 10 8 10 5 7 1 4
## 109 1 1 1 1 2 1 2 3 1 2
## 110 6 5 4 4 3 9 7 8 3 4
## 111 1 3 1 2 2 2 5 3 2 2
## 112 8 6 4 3 5 9 3 1 1 4
## 113 10 3 3 10 2 10 7 3 3 4
## 114 10 10 10 3 10 8 8 1 1 4
## 115 3 3 2 1 2 3 3 1 1 2
## 116 1 1 1 1 2 5 1 1 1 2
## 117 8 3 3 1 2 2 3 2 1 2
## 118 4 5 5 10 4 10 7 5 8 4
## 119 1 1 1 1 4 3 1 1 1 2
## 120 3 2 1 1 2 2 3 1 1 2
## 121 1 1 2 2 2 1 3 1 1 2
## 122 4 2 1 1 2 2 3 1 1 2
## 123 10 10 10 2 10 10 5 3 3 4
## 124 5 3 5 1 8 10 5 3 1 4
## 125 5 4 6 7 9 7 8 10 1 4
## 126 1 1 1 1 2 1 2 1 1 2
## 127 7 5 3 7 4 10 7 5 5 4
## 128 3 1 1 1 2 1 3 1 1 2
## 129 8 3 5 4 5 10 1 6 2 4
## 130 1 1 1 1 10 1 1 1 1 2
## 131 5 1 3 1 2 1 2 1 1 2
## 132 2 1 1 1 2 1 3 1 1 2
## 133 5 10 8 10 8 10 3 6 3 4
## 134 3 1 1 1 2 1 2 2 1 2
## 135 3 1 1 1 3 1 2 1 1 2
## 136 5 1 1 1 2 2 3 3 1 2
## 137 4 1 1 1 2 1 2 1 1 2
## 138 3 1 1 1 2 1 1 1 1 2
## 139 4 1 2 1 2 1 2 1 1 2
## 140 1 1 1 1 1 NA 2 1 1 2
## 141 3 1 1 1 2 1 1 1 1 2
## 142 2 1 1 1 2 1 1 1 1 2
## 143 9 5 5 4 4 5 4 3 3 4
## 144 1 1 1 1 2 5 1 1 1 2
## 145 2 1 1 1 2 1 2 1 1 2
## 146 1 1 3 1 2 NA 2 1 1 2
## 147 3 4 5 2 6 8 4 1 1 4
## 148 1 1 1 1 3 2 2 1 1 2
## 149 3 1 1 3 8 1 5 8 1 2
## 150 8 8 7 4 10 10 7 8 7 4
## 151 1 1 1 1 1 1 3 1 1 2
## 152 7 2 4 1 6 10 5 4 3 4
## 153 10 10 8 6 4 5 8 10 1 4
## 154 4 1 1 1 2 3 1 1 1 2
## 155 1 1 1 1 2 1 1 1 1 2
## 156 5 5 5 6 3 10 3 1 1 4
## 157 1 2 2 1 2 1 2 1 1 2
## 158 2 1 1 1 2 1 3 1 1 2
## 159 1 1 2 1 3 NA 1 1 1 2
## 160 9 9 10 3 6 10 7 10 6 4
## 161 10 7 7 4 5 10 5 7 2 4
## 162 4 1 1 1 2 1 3 2 1 2
## 163 3 1 1 1 2 1 3 1 1 2
## 164 1 1 1 2 1 3 1 1 7 2
## 165 5 1 1 1 2 NA 3 1 1 2
## 166 4 1 1 1 2 2 3 2 1 2
## 167 5 6 7 8 8 10 3 10 3 4
## 168 10 8 10 10 6 1 3 1 10 4
## 169 3 1 1 1 2 1 3 1 1 2
## 170 1 1 1 2 1 1 1 1 1 2
## 171 3 1 1 1 2 1 1 1 1 2
## 172 1 1 1 1 2 1 3 1 1 2
## 173 1 1 1 1 2 1 2 1 1 2
## 174 6 10 10 10 8 10 10 10 7 4
## 175 8 6 5 4 3 10 6 1 1 4
## 176 5 8 7 7 10 10 5 7 1 4
## 177 2 1 1 1 2 1 3 1 1 2
## 178 5 10 10 3 8 1 5 10 3 4
## 179 4 1 1 1 2 1 3 1 1 2
## 180 5 3 3 3 6 10 3 1 1 4
## 181 1 1 1 1 1 1 3 1 1 2
## 182 1 1 1 1 2 1 1 1 1 2
## 183 6 1 1 1 2 1 3 1 1 2
## 184 5 8 8 8 5 10 7 8 1 4
## 185 8 7 6 4 4 10 5 1 1 4
## 186 2 1 1 1 1 1 3 1 1 2
## 187 1 5 8 6 5 8 7 10 1 4
## 188 10 5 6 10 6 10 7 7 10 4
## 189 5 8 4 10 5 8 9 10 1 4
## 190 1 2 3 1 2 1 3 1 1 2
## 191 10 10 10 8 6 8 7 10 1 4
## 192 7 5 10 10 10 10 4 10 3 4
## 193 5 1 1 1 2 1 2 1 1 2
## 194 1 1 1 1 2 1 3 1 1 2
## 195 3 1 1 1 2 1 3 1 1 2
## 196 4 1 1 1 2 1 3 1 1 2
## 197 8 4 4 5 4 7 7 8 2 2
## 198 5 1 1 4 2 1 3 1 1 2
## 199 1 1 1 1 2 1 1 1 1 2
## 200 3 1 1 1 2 1 2 1 1 2
## 201 9 7 7 5 5 10 7 8 3 4
## 202 10 8 8 4 10 10 8 1 1 4
## 203 1 1 1 1 2 1 3 1 1 2
## 204 5 1 1 1 2 1 3 1 1 2
## 205 1 1 1 1 2 1 3 1 1 2
## 206 5 10 10 9 6 10 7 10 5 4
## 207 10 10 9 3 7 5 3 5 1 4
## 208 1 1 1 1 1 1 3 1 1 2
## 209 1 1 1 1 1 1 3 1 1 2
## 210 5 1 1 1 1 1 3 1 1 2
## 211 8 10 10 10 5 10 8 10 6 4
## 212 8 10 8 8 4 8 7 7 1 4
## 213 1 1 1 1 2 1 3 1 1 2
## 214 10 10 10 10 7 10 7 10 4 4
## 215 10 10 10 10 3 10 10 6 1 4
## 216 8 7 8 7 5 5 5 10 2 4
## 217 1 1 1 1 2 1 2 1 1 2
## 218 1 1 1 1 2 1 3 1 1 2
## 219 6 10 7 7 6 4 8 10 2 4
## 220 6 1 3 1 2 1 3 1 1 2
## 221 1 1 1 2 2 1 3 1 1 2
## 222 10 6 4 3 10 10 9 10 1 4
## 223 4 1 1 3 1 5 2 1 1 4
## 224 7 5 6 3 3 8 7 4 1 4
## 225 10 5 5 6 3 10 7 9 2 4
## 226 1 1 1 1 2 1 2 1 1 2
## 227 10 5 7 4 4 10 8 9 1 4
## 228 8 9 9 5 3 5 7 7 1 4
## 229 1 1 1 1 1 1 3 1 1 2
## 230 10 10 10 3 10 10 9 10 1 4
## 231 7 4 7 4 3 7 7 6 1 4
## 232 6 8 7 5 6 8 8 9 2 4
## 233 8 4 6 3 3 1 4 3 1 2
## 234 10 4 5 5 5 10 4 1 1 4
## 235 3 3 2 1 3 1 3 6 1 2
## 236 3 1 4 1 2 NA 3 1 1 2
## 237 10 8 8 2 8 10 4 8 10 4
## 238 9 8 8 5 6 2 4 10 4 4
## 239 8 10 10 8 6 9 3 10 10 4
## 240 10 4 3 2 3 10 5 3 2 4
## 241 5 1 3 3 2 2 2 3 1 2
## 242 3 1 1 3 1 1 3 1 1 2
## 243 2 1 1 1 2 1 3 1 1 2
## 244 1 1 1 1 2 5 5 1 1 2
## 245 1 1 1 1 2 1 3 1 1 2
## 246 5 1 1 2 2 2 3 1 1 2
## 247 8 10 10 8 5 10 7 8 1 4
## 248 8 4 4 1 2 9 3 3 1 4
## 249 4 1 1 1 2 1 3 6 1 2
## 250 3 1 1 1 2 NA 3 1 1 2
## 251 1 2 2 1 2 1 1 1 1 2
## 252 10 4 4 10 2 10 5 3 3 4
## 253 6 3 3 5 3 10 3 5 3 2
## 254 6 10 10 2 8 10 7 3 3 4
## 255 9 10 10 1 10 8 3 3 1 4
## 256 5 6 6 2 4 10 3 6 1 4
## 257 3 1 1 1 2 1 1 1 1 2
## 258 3 1 1 1 2 1 2 1 1 2
## 259 3 1 1 1 2 1 3 1 1 2
## 260 5 7 7 1 5 8 3 4 1 2
## 261 10 5 8 10 3 10 5 1 3 4
## 262 5 10 10 6 10 10 10 6 5 4
## 263 8 8 9 4 5 10 7 8 1 4
## 264 10 4 4 10 6 10 5 5 1 4
## 265 7 9 4 10 10 3 5 3 3 4
## 266 5 1 4 1 2 1 3 2 1 2
## 267 10 10 6 3 3 10 4 3 2 4
## 268 3 3 5 2 3 10 7 1 1 4
## 269 10 8 8 2 3 4 8 7 8 4
## 270 1 1 1 1 2 1 3 1 1 2
## 271 8 4 7 1 3 10 3 9 2 4
## 272 5 1 1 1 2 1 3 1 1 2
## 273 3 3 5 2 3 10 7 1 1 4
## 274 7 2 4 1 3 4 3 3 1 4
## 275 3 1 1 1 2 1 3 2 1 2
## 276 3 1 3 1 2 NA 2 1 1 2
## 277 3 1 1 1 2 1 2 1 1 2
## 278 1 1 1 1 2 1 2 1 1 2
## 279 1 1 1 1 2 1 3 1 1 2
## 280 10 5 7 3 3 7 3 3 8 4
## 281 3 1 1 1 2 1 3 1 1 2
## 282 2 1 1 2 2 1 3 1 1 2
## 283 1 4 3 10 4 10 5 6 1 4
## 284 10 4 6 1 2 10 5 3 1 4
## 285 7 4 5 10 2 10 3 8 2 4
## 286 8 10 10 10 8 10 10 7 3 4
## 287 10 10 10 10 10 10 4 10 10 4
## 288 3 1 1 1 3 1 2 1 1 2
## 289 6 1 3 1 4 5 5 10 1 4
## 290 5 6 6 8 6 10 4 10 4 4
## 291 1 1 1 1 2 1 1 1 1 2
## 292 1 1 1 1 2 1 3 1 1 2
## 293 8 8 8 1 2 NA 6 10 1 4
## 294 10 4 4 6 2 10 2 3 1 4
## 295 1 1 1 1 2 NA 2 1 1 2
## 296 5 5 7 8 6 10 7 4 1 4
## 297 5 3 4 3 4 5 4 7 1 2
## 298 5 4 3 1 2 NA 2 3 1 2
## 299 8 2 1 1 5 1 1 1 1 2
## 300 9 1 2 6 4 10 7 7 2 4
## 301 8 4 10 5 4 4 7 10 1 4
## 302 1 1 1 1 2 1 3 1 1 2
## 303 10 10 10 7 9 10 7 10 10 4
## 304 1 1 1 1 2 1 3 1 1 2
## 305 8 3 4 9 3 10 3 3 1 4
## 306 10 8 4 4 4 10 3 10 4 4
## 307 1 1 1 1 2 1 3 1 1 2
## 308 1 1 1 1 2 1 3 1 1 2
## 309 7 8 7 6 4 3 8 8 4 4
## 310 3 1 1 1 2 5 5 1 1 2
## 311 2 1 1 1 3 1 2 1 1 2
## 312 1 1 1 1 2 1 1 1 1 2
## 313 8 6 4 10 10 1 3 5 1 4
## 314 1 1 1 1 2 1 1 1 1 2
## 315 1 1 1 1 1 1 2 1 1 2
## 316 4 6 5 6 7 NA 4 9 1 2
## 317 5 5 5 2 5 10 4 3 1 4
## 318 6 8 7 8 6 8 8 9 1 4
## 319 1 1 1 1 5 1 3 1 1 2
## 320 4 4 4 4 6 5 7 3 1 2
## 321 7 6 3 2 5 10 7 4 6 4
## 322 3 1 1 1 2 NA 3 1 1 2
## 323 3 1 1 1 2 1 3 1 1 2
## 324 5 4 6 10 2 10 4 1 1 4
## 325 1 1 1 1 2 1 3 1 1 2
## 326 3 2 2 1 2 1 2 3 1 2
## 327 10 1 1 1 2 10 5 4 1 4
## 328 1 1 1 1 2 1 2 1 1 2
## 329 8 10 3 2 6 4 3 10 1 4
## 330 10 4 6 4 5 10 7 1 1 4
## 331 10 4 7 2 2 8 6 1 1 4
## 332 5 1 1 1 2 1 3 1 2 2
## 333 5 2 2 2 2 1 2 2 1 2
## 334 5 4 6 6 4 10 4 3 1 4
## 335 8 6 7 3 3 10 3 4 2 4
## 336 1 1 1 1 2 1 1 1 1 2
## 337 6 5 5 8 4 10 3 4 1 4
## 338 1 1 1 1 2 1 3 1 1 2
## 339 1 1 1 1 1 1 2 1 1 2
## 340 8 5 5 5 2 10 4 3 1 4
## 341 10 3 3 1 2 10 7 6 1 4
## 342 1 1 1 1 2 1 3 1 1 2
## 343 2 1 1 1 2 1 1 1 1 2
## 344 1 1 1 1 2 1 1 1 1 2
## 345 7 6 4 8 10 10 9 5 3 4
## 346 1 1 1 1 2 1 1 1 1 2
## 347 5 2 2 2 3 1 1 3 1 2
## 348 1 1 1 1 1 1 1 3 1 2
## 349 3 4 4 10 5 1 3 3 1 4
## 350 4 2 3 5 3 8 7 6 1 4
## 351 5 1 1 3 2 1 1 1 1 2
## 352 2 1 1 1 2 1 3 1 1 2
## 353 3 4 5 3 7 3 4 6 1 2
## 354 2 7 10 10 7 10 4 9 4 4
## 355 1 1 1 1 2 1 2 1 1 2
## 356 4 1 1 1 3 1 2 2 1 2
## 357 5 3 3 1 3 3 3 3 3 4
## 358 8 10 10 7 10 10 7 3 8 4
## 359 8 10 5 3 8 4 4 10 3 4
## 360 10 3 5 4 3 7 3 5 3 4
## 361 6 10 10 10 10 10 8 10 10 4
## 362 3 10 3 10 6 10 5 1 4 4
## 363 3 2 2 1 4 3 2 1 1 2
## 364 4 4 4 2 2 3 2 1 1 2
## 365 2 1 1 1 2 1 3 1 1 2
## 366 2 1 1 1 2 1 2 1 1 2
## 367 6 10 10 10 8 10 7 10 7 4
## 368 5 8 8 10 5 10 8 10 3 4
## 369 1 1 3 1 2 1 1 1 1 2
## 370 1 1 3 1 1 1 2 1 1 2
## 371 4 3 2 1 3 1 2 1 1 2
## 372 1 1 3 1 2 1 1 1 1 2
## 373 4 1 2 1 2 1 2 1 1 2
## 374 5 1 1 2 2 1 2 1 1 2
## 375 3 1 2 1 2 1 2 1 1 2
## 376 1 1 1 1 2 1 1 1 1 2
## 377 1 1 1 1 2 1 2 1 1 2
## 378 1 1 1 1 1 1 2 1 1 2
## 379 3 1 1 4 3 1 2 2 1 2
## 380 5 3 4 1 4 1 3 1 1 2
## 381 1 1 1 1 2 1 1 1 1 2
## 382 10 6 3 6 4 10 7 8 4 4
## 383 3 2 2 2 2 1 3 2 1 2
## 384 2 1 1 1 2 1 1 1 1 2
## 385 2 1 1 1 2 1 1 1 1 2
## 386 3 3 2 2 3 1 1 2 3 2
## 387 7 6 6 3 2 10 7 1 1 4
## 388 5 3 3 2 3 1 3 1 1 2
## 389 2 1 1 1 2 1 2 2 1 2
## 390 5 1 1 1 3 2 2 2 1 2
## 391 1 1 1 2 2 1 2 1 1 2
## 392 10 8 7 4 3 10 7 9 1 4
## 393 3 1 1 1 2 1 2 1 1 2
## 394 1 1 1 1 1 1 1 1 1 2
## 395 1 2 3 1 2 1 2 1 1 2
## 396 3 1 1 1 2 1 2 1 1 2
## 397 3 1 1 1 2 1 3 1 1 2
## 398 4 1 1 1 2 1 1 1 1 2
## 399 3 2 1 1 2 1 2 2 1 2
## 400 1 2 3 1 2 1 1 1 1 2
## 401 3 10 8 7 6 9 9 3 8 4
## 402 3 1 1 1 2 1 1 1 1 2
## 403 5 3 3 1 2 1 2 1 1 2
## 404 3 1 1 1 2 4 1 1 1 2
## 405 1 2 1 3 2 1 1 2 1 2
## 406 1 1 1 1 2 1 2 1 1 2
## 407 4 2 2 1 2 1 2 1 1 2
## 408 1 1 1 1 2 1 2 1 1 2
## 409 2 3 2 2 2 2 3 1 1 2
## 410 3 1 2 1 2 1 2 1 1 2
## 411 1 1 1 1 2 1 2 1 1 2
## 412 1 1 1 1 1 NA 2 1 1 2
## 413 10 10 10 6 8 4 8 5 1 4
## 414 5 1 2 1 2 1 3 1 1 2
## 415 8 5 6 2 3 10 6 6 1 4
## 416 3 3 2 6 3 3 3 5 1 2
## 417 8 7 8 5 10 10 7 2 1 4
## 418 1 1 1 1 2 1 2 1 1 2
## 419 5 2 2 2 2 2 3 2 2 2
## 420 2 3 1 1 5 1 1 1 1 2
## 421 3 2 2 3 2 3 3 1 1 2
## 422 10 10 10 7 10 10 8 2 1 4
## 423 4 3 3 1 2 1 3 3 1 2
## 424 5 1 3 1 2 1 2 1 1 2
## 425 3 1 1 1 2 1 1 1 1 2
## 426 9 10 10 10 10 10 10 10 1 4
## 427 5 3 6 1 2 1 1 1 1 2
## 428 8 7 8 2 4 2 5 10 1 4
## 429 1 1 1 1 2 1 2 1 1 2
## 430 2 1 1 1 2 1 2 1 1 2
## 431 1 3 1 1 2 1 2 2 1 2
## 432 5 1 1 3 4 1 3 2 1 2
## 433 5 1 1 1 2 1 2 2 1 2
## 434 3 2 2 3 2 1 1 1 1 2
## 435 6 9 7 5 5 8 4 2 1 2
## 436 10 8 10 1 3 10 5 1 1 4
## 437 10 10 10 1 6 1 2 8 1 4
## 438 4 1 1 1 2 1 1 1 1 2
## 439 4 1 3 3 2 1 1 1 1 2
## 440 5 1 1 1 2 1 1 1 1 2
## 441 10 4 3 10 4 10 10 1 1 4
## 442 5 2 2 4 2 4 1 1 1 2
## 443 1 1 1 3 2 3 1 1 1 2
## 444 1 1 1 1 2 2 1 1 1 2
## 445 5 1 1 6 3 1 2 1 1 2
## 446 2 1 1 1 2 1 1 1 1 2
## 447 1 1 1 1 2 1 1 1 1 2
## 448 5 1 1 1 2 1 1 1 1 2
## 449 1 1 1 1 1 1 1 1 1 2
## 450 5 7 9 8 6 10 8 10 1 4
## 451 4 1 1 3 1 1 2 1 1 2
## 452 5 1 1 1 2 1 1 1 1 2
## 453 3 1 1 3 2 1 1 1 1 2
## 454 4 5 5 8 6 10 10 7 1 4
## 455 2 3 1 1 3 1 1 1 1 2
## 456 10 2 2 1 2 6 1 1 2 4
## 457 10 6 5 8 5 10 8 6 1 4
## 458 8 8 9 6 6 3 10 10 1 4
## 459 5 1 2 1 2 1 1 1 1 2
## 460 5 1 3 1 2 1 1 1 1 2
## 461 5 1 1 3 2 1 1 1 1 2
## 462 3 1 1 1 2 5 1 1 1 2
## 463 6 1 1 3 2 1 1 1 1 2
## 464 4 1 1 1 2 1 1 2 1 2
## 465 4 1 1 1 2 1 1 1 1 2
## 466 10 9 8 7 6 4 7 10 3 4
## 467 10 6 6 2 4 10 9 7 1 4
## 468 6 6 6 5 4 10 7 6 2 4
## 469 4 1 1 1 2 1 1 1 1 2
## 470 1 1 2 1 2 1 2 1 1 2
## 471 3 1 1 1 1 1 2 1 1 2
## 472 6 1 1 3 2 1 1 1 1 2
## 473 6 1 1 1 1 1 1 1 1 2
## 474 4 1 1 1 2 1 1 1 1 2
## 475 5 1 1 1 2 1 1 1 1 2
## 476 3 1 1 1 2 1 1 1 1 2
## 477 4 1 2 1 2 1 1 1 1 2
## 478 4 1 1 1 2 1 1 1 1 2
## 479 5 2 1 1 2 1 1 1 1 2
## 480 4 8 7 10 4 10 7 5 1 4
## 481 5 1 1 1 1 1 1 1 1 2
## 482 5 3 2 4 2 1 1 1 1 2
## 483 9 10 10 10 10 5 10 10 10 4
## 484 8 7 8 5 5 10 9 10 1 4
## 485 5 1 2 1 2 1 1 1 1 2
## 486 1 1 1 3 1 3 1 1 1 2
## 487 3 1 1 1 1 1 2 1 1 2
## 488 10 10 10 10 6 10 8 1 5 4
## 489 3 6 4 10 3 3 3 4 1 4
## 490 6 3 2 1 3 4 4 1 1 4
## 491 1 1 1 1 2 1 1 1 1 2
## 492 5 8 9 4 3 10 7 1 1 4
## 493 4 1 1 1 1 1 2 1 1 2
## 494 5 10 10 10 6 10 6 5 2 4
## 495 5 1 2 10 4 5 2 1 1 2
## 496 3 1 1 1 1 1 2 1 1 2
## 497 1 1 1 1 1 1 1 1 1 2
## 498 4 2 1 1 2 1 1 1 1 2
## 499 4 1 1 1 2 1 2 1 1 2
## 500 4 1 1 1 2 1 2 1 1 2
## 501 6 1 1 1 2 1 3 1 1 2
## 502 4 1 1 1 2 1 2 1 1 2
## 503 4 1 1 2 2 1 2 1 1 2
## 504 4 1 1 1 2 1 3 1 1 2
## 505 1 1 1 1 2 1 1 1 1 2
## 506 3 3 1 1 2 1 1 1 1 2
## 507 8 10 10 10 7 5 4 8 7 4
## 508 1 1 1 1 2 4 1 1 1 2
## 509 5 1 1 1 2 1 1 1 1 2
## 510 2 1 1 1 2 1 1 1 1 2
## 511 1 1 1 1 2 1 1 1 1 2
## 512 5 1 1 1 2 1 2 1 1 2
## 513 5 1 1 1 2 1 1 1 1 2
## 514 3 1 1 1 1 1 2 1 1 2
## 515 6 6 7 10 3 10 8 10 2 4
## 516 4 10 4 7 3 10 9 10 1 4
## 517 1 1 1 1 1 1 1 1 1 2
## 518 1 1 1 1 1 1 2 1 1 2
## 519 3 1 2 2 2 1 1 1 1 2
## 520 4 7 8 3 4 10 9 1 1 4
## 521 1 1 1 1 3 1 1 1 1 2
## 522 4 1 1 1 3 1 1 1 1 2
## 523 10 4 5 4 3 5 7 3 1 4
## 524 7 5 6 10 4 10 5 3 1 4
## 525 3 1 1 1 2 1 2 1 1 2
## 526 3 1 1 2 2 1 1 1 1 2
## 527 4 1 1 1 2 1 1 1 1 2
## 528 4 1 1 1 2 1 3 1 1 2
## 529 6 1 3 2 2 1 1 1 1 2
## 530 4 1 1 1 1 1 2 1 1 2
## 531 7 4 4 3 4 10 6 9 1 4
## 532 4 2 2 1 2 1 2 1 1 2
## 533 1 1 1 1 1 1 3 1 1 2
## 534 3 1 1 1 2 1 2 1 1 2
## 535 2 1 1 1 2 1 2 1 1 2
## 536 1 1 3 2 2 1 3 1 1 2
## 537 5 1 1 1 2 1 3 1 1 2
## 538 5 1 2 1 2 1 3 1 1 2
## 539 4 1 1 1 2 1 2 1 1 2
## 540 6 1 1 1 2 1 2 1 1 2
## 541 5 1 1 1 2 2 2 1 1 2
## 542 3 1 1 1 2 1 1 1 1 2
## 543 5 3 1 1 2 1 1 1 1 2
## 544 4 1 1 1 2 1 2 1 1 2
## 545 2 1 3 2 2 1 2 1 1 2
## 546 5 1 1 1 2 1 2 1 1 2
## 547 6 10 10 10 4 10 7 10 1 4
## 548 2 1 1 1 1 1 1 1 1 2
## 549 3 1 1 1 1 1 1 1 1 2
## 550 7 8 3 7 4 5 7 8 2 4
## 551 3 1 1 1 2 1 2 1 1 2
## 552 1 1 1 1 2 1 3 1 1 2
## 553 3 2 2 2 2 1 4 2 1 2
## 554 4 4 2 1 2 5 2 1 2 2
## 555 3 1 1 1 2 1 1 1 1 2
## 556 4 3 1 1 2 1 4 8 1 2
## 557 5 2 2 2 1 1 2 1 1 2
## 558 5 1 1 3 2 1 1 1 1 2
## 559 2 1 1 1 2 1 2 1 1 2
## 560 5 1 1 1 2 1 2 1 1 2
## 561 5 1 1 1 2 1 3 1 1 2
## 562 5 1 1 1 2 1 3 1 1 2
## 563 1 1 1 1 2 1 3 1 1 2
## 564 3 1 1 1 2 1 2 1 1 2
## 565 4 1 1 1 2 1 3 2 1 2
## 566 5 7 10 10 5 10 10 10 1 4
## 567 3 1 2 1 2 1 3 1 1 2
## 568 4 1 1 1 2 3 2 1 1 2
## 569 8 4 4 1 6 10 2 5 2 4
## 570 10 10 8 10 6 5 10 3 1 4
## 571 8 10 4 4 8 10 8 2 1 4
## 572 7 6 10 5 3 10 9 10 2 4
## 573 3 1 1 1 2 1 2 1 1 2
## 574 1 1 1 1 2 1 2 1 1 2
## 575 10 9 7 3 4 2 7 7 1 4
## 576 5 1 2 1 2 1 3 1 1 2
## 577 5 1 1 1 2 1 2 1 1 2
## 578 1 1 1 1 2 1 2 1 1 2
## 579 1 1 1 1 2 1 2 1 1 2
## 580 1 1 1 1 2 1 3 1 1 2
## 581 5 1 2 1 2 1 2 1 1 2
## 582 5 7 10 6 5 10 7 5 1 4
## 583 6 10 5 5 4 10 6 10 1 4
## 584 3 1 1 1 2 1 1 1 1 2
## 585 5 1 1 6 3 1 1 1 1 2
## 586 1 1 1 1 2 1 1 1 1 2
## 587 8 10 10 10 6 10 10 10 1 4
## 588 5 1 1 1 2 1 2 2 1 2
## 589 9 8 8 9 6 3 4 1 1 4
## 590 5 1 1 1 2 1 1 1 1 2
## 591 4 10 8 5 4 1 10 1 1 4
## 592 2 5 7 6 4 10 7 6 1 4
## 593 10 3 4 5 3 10 4 1 1 4
## 594 5 1 2 1 2 1 1 1 1 2
## 595 4 8 6 3 4 10 7 1 1 4
## 596 5 1 1 1 2 1 2 1 1 2
## 597 4 1 2 1 2 1 2 1 1 2
## 598 5 1 3 1 2 1 3 1 1 2
## 599 3 1 1 1 2 1 2 1 1 2
## 600 5 2 4 1 1 1 1 1 1 2
## 601 3 1 1 1 2 1 2 1 1 2
## 602 1 1 1 1 1 1 2 1 1 2
## 603 4 1 1 1 2 1 2 1 1 2
## 604 5 4 6 8 4 1 8 10 1 4
## 605 5 3 2 8 5 10 8 1 2 4
## 606 10 5 10 3 5 8 7 8 3 4
## 607 4 1 1 2 2 1 1 1 1 2
## 608 1 1 1 1 2 1 1 1 1 2
## 609 5 10 10 10 10 10 10 1 1 4
## 610 5 1 1 1 2 1 1 1 1 2
## 611 10 4 3 10 3 10 7 1 2 4
## 612 5 10 10 10 5 2 8 5 1 4
## 613 8 10 10 10 6 10 10 10 10 4
## 614 2 3 1 1 2 1 2 1 1 2
## 615 2 1 1 1 1 1 2 1 1 2
## 616 4 1 3 1 2 1 2 1 1 2
## 617 3 1 1 1 2 1 2 1 1 2
## 618 1 1 1 1 1 NA 1 1 1 2
## 619 4 1 1 1 2 1 2 1 1 2
## 620 5 1 1 1 2 1 2 1 1 2
## 621 3 1 1 1 2 1 2 1 1 2
## 622 6 3 3 3 3 2 6 1 1 2
## 623 7 1 2 3 2 1 2 1 1 2
## 624 1 1 1 1 2 1 1 1 1 2
## 625 5 1 1 2 1 1 2 1 1 2
## 626 3 1 3 1 3 4 1 1 1 2
## 627 4 6 6 5 7 6 7 7 3 4
## 628 2 1 1 1 2 5 1 1 1 2
## 629 2 1 1 1 2 1 1 1 1 2
## 630 4 1 1 1 2 1 1 1 1 2
## 631 6 2 3 1 2 1 1 1 1 2
## 632 5 1 1 1 2 1 2 1 1 2
## 633 1 1 1 1 2 1 1 1 1 2
## 634 8 7 4 4 5 3 5 10 1 4
## 635 3 1 1 1 2 1 1 1 1 2
## 636 3 1 4 1 2 1 1 1 1 2
## 637 10 10 7 8 7 1 10 10 3 4
## 638 4 2 4 3 2 2 2 1 1 2
## 639 4 1 1 1 2 1 1 1 1 2
## 640 5 1 1 3 2 1 1 1 1 2
## 641 4 1 1 3 2 1 1 1 1 2
## 642 3 1 1 1 2 1 2 1 1 2
## 643 3 1 1 1 2 1 2 1 1 2
## 644 1 1 1 1 2 1 1 1 1 2
## 645 2 1 1 1 2 1 1 1 1 2
## 646 3 1 1 1 2 1 2 1 1 2
## 647 1 2 2 1 2 1 1 1 1 2
## 648 1 1 1 3 2 1 1 1 1 2
## 649 5 10 10 10 10 2 10 10 10 4
## 650 3 1 1 1 2 1 2 1 1 2
## 651 3 1 1 2 3 4 1 1 1 2
## 652 1 2 1 3 2 1 2 1 1 2
## 653 5 1 1 1 2 1 2 2 1 2
## 654 4 1 1 1 2 1 2 1 1 2
## 655 3 1 1 1 2 1 3 1 1 2
## 656 3 1 1 1 2 1 2 1 1 2
## 657 5 1 1 1 2 1 2 1 1 2
## 658 5 4 5 1 8 1 3 6 1 2
## 659 7 8 8 7 3 10 7 2 3 4
## 660 1 1 1 1 2 1 1 1 1 2
## 661 1 1 1 1 2 1 2 1 1 2
## 662 4 1 1 1 2 1 3 1 1 2
## 663 1 1 3 1 2 1 2 1 1 2
## 664 1 1 3 1 2 1 2 1 1 2
## 665 3 1 1 3 2 1 2 1 1 2
## 666 1 1 1 1 2 1 1 1 1 2
## 667 5 2 2 2 2 1 1 1 2 2
## 668 3 1 1 1 2 1 3 1 1 2
## 669 5 7 4 1 6 1 7 10 3 4
## 670 5 10 10 8 5 5 7 10 1 4
## 671 3 10 7 8 5 8 7 4 1 4
## 672 3 2 1 2 2 1 3 1 1 2
## 673 2 1 1 1 2 1 3 1 1 2
## 674 5 3 2 1 3 1 1 1 1 2
## 675 1 1 1 1 2 1 2 1 1 2
## 676 4 1 4 1 2 1 1 1 1 2
## 677 1 1 2 1 2 1 2 1 1 2
## 678 5 1 1 1 2 1 1 1 1 2
## 679 1 1 1 1 2 1 1 1 1 2
## 680 2 1 1 1 2 1 1 1 1 2
## 681 10 10 10 10 5 10 10 10 7 4
## 682 5 10 10 10 4 10 5 6 3 4
## 683 5 1 1 1 2 1 3 2 1 2
## 684 1 1 1 1 2 1 1 1 1 2
## 685 1 1 1 1 2 1 1 1 1 2
## 686 1 1 1 1 2 1 1 1 1 2
## 687 1 1 1 1 2 1 1 1 1 2
## 688 3 1 1 1 2 1 2 3 1 2
## 689 4 1 1 1 2 1 1 1 1 2
## 690 1 1 1 1 2 1 1 1 8 2
## 691 1 1 1 3 2 1 1 1 1 2
## 692 5 10 10 5 4 5 4 4 1 4
## 693 3 1 1 1 2 1 1 1 1 2
## 694 3 1 1 1 2 1 2 1 2 2
## 695 3 1 1 1 3 2 1 1 1 2
## 696 2 1 1 1 2 1 1 1 1 2
## 697 5 10 10 3 7 3 8 10 2 4
## 698 4 8 6 4 3 4 10 6 1 4
## 699 4 8 8 5 4 5 10 4 1 4
df$V11 <- factor(df$V11, levels=c(2,4), labels=c("1", "2"))
str(df)
## 'data.frame': 699 obs. of 10 variables:
## $ V2 : int 5 5 3 6 4 8 1 2 2 4 ...
## $ V3 : int 1 4 1 8 1 10 1 1 1 2 ...
## $ V4 : int 1 4 1 8 1 10 1 2 1 1 ...
## $ V5 : int 1 5 1 1 3 8 1 1 1 1 ...
## $ V6 : int 2 7 2 3 2 7 2 2 2 2 ...
## $ V7 : int 1 10 2 4 1 10 10 1 1 1 ...
## $ V8 : int 3 3 3 3 3 9 3 3 1 2 ...
## $ V9 : int 1 2 1 7 1 7 1 1 1 1 ...
## $ V10: int 1 1 1 1 1 1 1 1 5 1 ...
## $ V11: Factor w/ 2 levels "1","2": 1 1 1 1 1 2 1 1 1 1 ...
library(caTools)
set.seed(123)
set.seed(123)
split = sample.split(df$V11, SplitRatio = 0.7)
training_set = subset(df, split == TRUE)
test_set = subset(df, split == FALSE)
prop.table(table(df$V11))
##
## 1 2
## 0.6552217 0.3447783
prop.table(table(training_set$V11))
##
## 1 2
## 0.655102 0.344898
prop.table(table(test_set$V11))
##
## 1 2
## 0.6555024 0.3444976
classifier = glm(V11 ~., training_set, family = binomial)
summary(classifier)
##
## Call:
## glm(formula = V11 ~ ., family = binomial, data = training_set)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.2762 -0.0940 -0.0552 0.0284 2.0749
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.076354 1.424300 -7.075 1.5e-12 ***
## V2 0.505034 0.188574 2.678 0.007402 **
## V3 0.004358 0.219328 0.020 0.984146
## V4 0.487276 0.255273 1.909 0.056282 .
## V5 0.180709 0.155224 1.164 0.244350
## V6 0.051222 0.186649 0.274 0.783754
## V7 0.400580 0.114917 3.486 0.000491 ***
## V8 0.477829 0.207467 2.303 0.021270 *
## V9 0.204022 0.127727 1.597 0.110192
## V10 0.270990 0.301128 0.900 0.368166
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 619.45 on 478 degrees of freedom
## Residual deviance: 67.17 on 469 degrees of freedom
## (11 observations deleted due to missingness)
## AIC: 87.17
##
## Number of Fisher Scoring iterations: 8
prob_pred = predict(classifier, type = 'response', test_set[ ,-10] )
prob_pred
## 2 4 5 9 12 15
## 0.8576330951 0.8761263735 0.0098446429 0.0028598601 0.0015619624 0.9987642960
## 23 29 30 31 34 36
## 0.0025855848 0.0015619624 0.0015490546 0.0024567972 0.0030132690 0.0015619624
## 39 42 44 49 55 58
## 0.9826086040 0.9182216319 0.2344952006 0.0098446429 0.9974025923 0.7404543476
## 62 64 65 66 67 73
## 0.0014072577 0.4242578120 0.0009432046 0.9117175063 0.0068791895 0.0388604957
## 75 88 92 95 108 109
## 0.8235282745 0.9936113791 0.0019222500 0.0025163647 0.9906592301 0.0014177853
## 111 114 121 126 127 128
## 0.0138877921 0.9997854944 0.0029603874 0.0009432046 0.9978454338 0.0041628410
## 130 132 133 135 148 154
## 0.0008812090 0.0025163647 0.9977258082 0.0027211051 0.0014811091 0.0059002091
## 155 157 160 167 169 174
## 0.0005851177 0.0015412035 0.9999869558 0.9976093913 0.0041628410 0.9999972620
## 178 181 183 184 186 187
## 0.9812930184 0.0014443114 0.0186646573 0.9993497035 0.0023910167 0.9895400421
## 191 195 198 199 201 204
## 0.9999725737 0.0041628410 0.0193562972 0.0005851177 0.9998588843 0.0113478194
## 206 207 212 214 220 223
## 0.9999565838 0.9935115472 0.9995924131 0.9999963862 0.0479832631 0.0282592745
## 233 234 236 237 242 245
## 0.6890652598 0.9931700185 NA 0.9999516716 0.0056682460 0.0015201045
## 246 248 249 254 256 259
## 0.0201138268 0.8942936184 0.0188494248 0.9993994249 0.9478133806 0.0041628410
## 263 271 273 274 275 276
## 0.9998190261 0.9961048417 0.9028145419 0.4182266320 0.0051001893 NA
## 283 287 294 301 306 308
## 0.8593587694 0.9999974435 0.9815076259 0.9992693698 0.9984206184 0.0015201045
## 316 319 326 327 330 332
## NA 0.0017721499 0.0063335725 0.9619767778 0.9987944745 0.0148275879
## 336 341 346 347 349 350
## 0.0005851177 0.9962332262 0.0005851177 0.0135014336 0.1401076556 0.9252624378
## 352 354 355 357 359 360
## 0.0025163647 0.9989309214 0.0009432046 0.1568778786 0.9773039611 0.9875138101
## 361 370 374 385 387 389
## 0.9999971496 0.0023712741 0.0084555803 0.0009691923 0.9924518145 0.0019147960
## 390 393 394 395 400 402
## 0.0135286812 0.0025855848 0.0005559175 0.0025064627 0.0015558101 0.0016049710
## 410 412 413 415 421 424
## 0.0042021893 NA 0.9996966771 0.9969584458 0.0213907151 0.0185130373
## 425 427 434 436 437 440
## 0.0016049710 0.0484353642 0.0037584171 0.9991639147 0.9743637252 0.0043946006
## 441 442 443 445 453 456
## 0.9995582481 0.0396397585 0.0018688970 0.0181569021 0.0023021057 0.4669781032
## 457 461 462 463 468 470
## 0.9997886629 0.0062957972 0.0079175431 0.0103894276 0.9978255357 0.0015345114
## 486 487 488 489 491 493
## 0.0017757439 0.0024567972 0.9999887164 0.2884459967 0.0005851177 0.0040644568
## 494 497 498 500 501 507
## 0.9996347036 0.0005559175 0.0026682769 0.0042771581 0.0186646573 0.9997943688
## 511 514 515 517 521 522
## 0.0005851177 0.0024567972 0.9998435015 0.0005559175 0.0006158506 0.0027959414
## 524 527 530 531 534 537
## 0.9966462040 0.0026567039 0.0040644568 0.9942477256 0.0025855848 0.0113478194
## 538 541 544 553 558 562
## 0.0183421540 0.0105130821 0.0042771581 0.0159347053 0.0062957972 0.0113478194
## 567 570 574 578 588 593
## 0.0067589227 0.9998325135 0.0009432046 0.0009432046 0.0086532957 0.9876966129
## 596 597 600 602 607 610
## 0.0070675717 0.0069440344 0.0178452746 0.0008961503 0.0031812324 0.0043946006
## 611 612 613 618 620 621
## 0.9985146253 0.9952424105 0.9999995100 NA 0.0070675717 0.0025855848
## 628 629 631 636 642 647
## 0.0047931644 0.0009691923 0.0190953686 0.0068869572 0.0025855848 0.0009563040
## 656 662 663 666 678 680
## 0.0025855848 0.0068791895 0.0024955897 0.0005851177 0.0043946006 0.0009691923
## 683 684 694 695 696
## 0.0138804613 0.0005851177 0.0033876519 0.0025193256 0.0009691923
y_pred = ifelse(prob_pred > 0.5, 1, 0)
y_pred
## 2 4 5 9 12 15 23 29 30 31 34 36 39 42 44 49 55 58 62 64
## 1 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0
## 65 66 67 73 75 88 92 95 108 109 111 114 121 126 127 128 130 132 133 135
## 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0
## 148 154 155 157 160 167 169 174 178 181 183 184 186 187 191 195 198 199 201 204
## 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0
## 206 207 212 214 220 223 233 234 236 237 242 245 246 248 249 254 256 259 263 271
## 1 1 1 1 0 0 1 1 NA 1 0 0 0 1 0 1 1 0 1 1
## 273 274 275 276 283 287 294 301 306 308 316 319 326 327 330 332 336 341 346 347
## 1 0 0 NA 1 1 1 1 1 0 NA 0 0 1 1 0 0 1 0 0
## 349 350 352 354 355 357 359 360 361 370 374 385 387 389 390 393 394 395 400 402
## 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0
## 410 412 413 415 421 424 425 427 434 436 437 440 441 442 443 445 453 456 457 461
## 0 NA 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0
## 462 463 468 470 486 487 488 489 491 493 494 497 498 500 501 507 511 514 515 517
## 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0
## 521 522 524 527 530 531 534 537 538 541 544 553 558 562 567 570 574 578 588 593
## 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
## 596 597 600 602 607 610 611 612 613 618 620 621 628 629 631 636 642 647 656 662
## 0 0 0 0 0 0 1 1 1 NA 0 0 0 0 0 0 0 0 0 0
## 663 666 678 680 683 684 694 695 696
## 0 0 0 0 0 0 0 0 0
cm = table(test_set$V11, y_pred)
cm
## y_pred
## 0 1
## 1 129 3
## 2 8 64
sum(is.na(df))
## [1] 16
colSums(is.na(df))
## V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
## 0 0 0 0 0 16 0 0 0 0
df$V7 <- NULL
df
## V2 V3 V4 V5 V6 V8 V9 V10 V11
## 1 5 1 1 1 2 3 1 1 1
## 2 5 4 4 5 7 3 2 1 1
## 3 3 1 1 1 2 3 1 1 1
## 4 6 8 8 1 3 3 7 1 1
## 5 4 1 1 3 2 3 1 1 1
## 6 8 10 10 8 7 9 7 1 2
## 7 1 1 1 1 2 3 1 1 1
## 8 2 1 2 1 2 3 1 1 1
## 9 2 1 1 1 2 1 1 5 1
## 10 4 2 1 1 2 2 1 1 1
## 11 1 1 1 1 1 3 1 1 1
## 12 2 1 1 1 2 2 1 1 1
## 13 5 3 3 3 2 4 4 1 2
## 14 1 1 1 1 2 3 1 1 1
## 15 8 7 5 10 7 5 5 4 2
## 16 7 4 6 4 6 4 3 1 2
## 17 4 1 1 1 2 2 1 1 1
## 18 4 1 1 1 2 3 1 1 1
## 19 10 7 7 6 4 4 1 2 2
## 20 6 1 1 1 2 3 1 1 1
## 21 7 3 2 10 5 5 4 4 2
## 22 10 5 5 3 6 7 10 1 2
## 23 3 1 1 1 2 2 1 1 1
## 24 8 4 5 1 2 7 3 1 2
## 25 1 1 1 1 2 3 1 1 1
## 26 5 2 3 4 2 3 6 1 2
## 27 3 2 1 1 1 2 1 1 1
## 28 5 1 1 1 2 2 1 1 1
## 29 2 1 1 1 2 2 1 1 1
## 30 1 1 3 1 2 1 1 1 1
## 31 3 1 1 1 1 2 1 1 1
## 32 2 1 1 1 2 3 1 1 1
## 33 10 7 7 3 8 7 4 3 2
## 34 2 1 1 2 2 3 1 1 1
## 35 3 1 2 1 2 2 1 1 1
## 36 2 1 1 1 2 2 1 1 1
## 37 10 10 10 8 6 8 9 1 2
## 38 6 2 1 1 1 7 1 1 1
## 39 5 4 4 9 2 5 6 1 2
## 40 2 5 3 3 6 7 5 1 2
## 41 6 6 6 9 6 7 8 1 1
## 42 10 4 3 1 3 6 5 2 2
## 43 6 10 10 2 8 7 3 3 2
## 44 5 6 5 6 10 3 1 1 2
## 45 10 10 10 4 8 8 10 1 2
## 46 1 1 1 1 2 2 1 2 1
## 47 3 7 7 4 4 4 8 1 2
## 48 1 1 1 1 2 2 1 1 1
## 49 4 1 1 3 2 3 1 1 1
## 50 7 8 7 2 4 3 8 2 2
## 51 9 5 8 1 2 2 1 5 2
## 52 5 3 3 4 2 3 4 1 2
## 53 10 3 6 2 3 4 10 2 2
## 54 5 5 5 8 10 7 3 7 2
## 55 10 5 5 6 8 7 1 1 2
## 56 10 6 6 3 4 3 6 1 2
## 57 8 10 10 1 3 3 9 1 2
## 58 8 2 4 1 5 5 4 4 2
## 59 5 2 3 1 6 5 1 1 2
## 60 9 5 5 2 2 5 1 1 2
## 61 5 3 5 5 3 4 10 1 2
## 62 1 1 1 1 2 2 1 1 1
## 63 9 10 10 1 10 3 3 1 2
## 64 6 3 4 1 5 3 9 1 2
## 65 1 1 1 1 2 2 1 1 1
## 66 10 4 2 1 3 4 3 10 2
## 67 4 1 1 1 2 3 1 1 1
## 68 5 3 4 1 8 4 9 1 2
## 69 8 3 8 3 4 8 9 8 2
## 70 1 1 1 1 2 3 2 1 1
## 71 5 1 3 1 2 2 1 1 1
## 72 6 10 2 8 10 7 8 10 2
## 73 1 3 3 2 2 7 2 1 1
## 74 9 4 5 10 6 4 8 1 2
## 75 10 6 4 1 3 3 2 3 2
## 76 1 1 2 1 2 4 2 1 1
## 77 1 1 4 1 2 2 1 1 1
## 78 5 3 1 2 2 2 1 1 1
## 79 3 1 1 1 2 3 1 1 1
## 80 2 1 1 1 3 2 1 1 1
## 81 2 2 2 1 1 7 1 1 1
## 82 4 1 1 2 2 2 1 1 1
## 83 5 2 1 1 2 3 1 1 1
## 84 3 1 1 1 2 7 1 1 1
## 85 3 5 7 8 8 7 10 7 2
## 86 5 10 6 1 10 4 10 10 2
## 87 3 3 6 4 5 4 4 1 2
## 88 3 6 6 6 5 6 8 3 2
## 89 4 1 1 1 2 3 1 1 1
## 90 2 1 1 2 3 2 1 1 1
## 91 1 1 1 1 2 3 1 1 1
## 92 3 1 1 2 2 1 1 1 1
## 93 4 1 1 1 2 3 1 1 1
## 94 1 1 1 1 2 2 1 1 1
## 95 2 1 1 1 2 3 1 1 1
## 96 1 1 1 1 2 3 1 1 1
## 97 2 1 1 2 2 1 1 1 1
## 98 5 1 1 1 2 3 1 1 1
## 99 9 6 9 2 10 2 9 10 2
## 100 7 5 6 10 5 7 9 4 2
## 101 10 3 5 1 10 3 10 2 2
## 102 2 3 4 4 2 2 5 1 2
## 103 4 1 2 1 2 3 1 1 1
## 104 8 2 3 1 6 7 1 1 2
## 105 10 10 10 10 10 8 8 8 2
## 106 7 3 4 4 3 3 2 7 2
## 107 10 10 10 8 2 4 1 1 2
## 108 1 6 8 10 8 5 7 1 2
## 109 1 1 1 1 2 2 3 1 1
## 110 6 5 4 4 3 7 8 3 2
## 111 1 3 1 2 2 5 3 2 1
## 112 8 6 4 3 5 3 1 1 2
## 113 10 3 3 10 2 7 3 3 2
## 114 10 10 10 3 10 8 1 1 2
## 115 3 3 2 1 2 3 1 1 1
## 116 1 1 1 1 2 1 1 1 1
## 117 8 3 3 1 2 3 2 1 1
## 118 4 5 5 10 4 7 5 8 2
## 119 1 1 1 1 4 1 1 1 1
## 120 3 2 1 1 2 3 1 1 1
## 121 1 1 2 2 2 3 1 1 1
## 122 4 2 1 1 2 3 1 1 1
## 123 10 10 10 2 10 5 3 3 2
## 124 5 3 5 1 8 5 3 1 2
## 125 5 4 6 7 9 8 10 1 2
## 126 1 1 1 1 2 2 1 1 1
## 127 7 5 3 7 4 7 5 5 2
## 128 3 1 1 1 2 3 1 1 1
## 129 8 3 5 4 5 1 6 2 2
## 130 1 1 1 1 10 1 1 1 1
## 131 5 1 3 1 2 2 1 1 1
## 132 2 1 1 1 2 3 1 1 1
## 133 5 10 8 10 8 3 6 3 2
## 134 3 1 1 1 2 2 2 1 1
## 135 3 1 1 1 3 2 1 1 1
## 136 5 1 1 1 2 3 3 1 1
## 137 4 1 1 1 2 2 1 1 1
## 138 3 1 1 1 2 1 1 1 1
## 139 4 1 2 1 2 2 1 1 1
## 140 1 1 1 1 1 2 1 1 1
## 141 3 1 1 1 2 1 1 1 1
## 142 2 1 1 1 2 1 1 1 1
## 143 9 5 5 4 4 4 3 3 2
## 144 1 1 1 1 2 1 1 1 1
## 145 2 1 1 1 2 2 1 1 1
## 146 1 1 3 1 2 2 1 1 1
## 147 3 4 5 2 6 4 1 1 2
## 148 1 1 1 1 3 2 1 1 1
## 149 3 1 1 3 8 5 8 1 1
## 150 8 8 7 4 10 7 8 7 2
## 151 1 1 1 1 1 3 1 1 1
## 152 7 2 4 1 6 5 4 3 2
## 153 10 10 8 6 4 8 10 1 2
## 154 4 1 1 1 2 1 1 1 1
## 155 1 1 1 1 2 1 1 1 1
## 156 5 5 5 6 3 3 1 1 2
## 157 1 2 2 1 2 2 1 1 1
## 158 2 1 1 1 2 3 1 1 1
## 159 1 1 2 1 3 1 1 1 1
## 160 9 9 10 3 6 7 10 6 2
## 161 10 7 7 4 5 5 7 2 2
## 162 4 1 1 1 2 3 2 1 1
## 163 3 1 1 1 2 3 1 1 1
## 164 1 1 1 2 1 1 1 7 1
## 165 5 1 1 1 2 3 1 1 1
## 166 4 1 1 1 2 3 2 1 1
## 167 5 6 7 8 8 3 10 3 2
## 168 10 8 10 10 6 3 1 10 2
## 169 3 1 1 1 2 3 1 1 1
## 170 1 1 1 2 1 1 1 1 1
## 171 3 1 1 1 2 1 1 1 1
## 172 1 1 1 1 2 3 1 1 1
## 173 1 1 1 1 2 2 1 1 1
## 174 6 10 10 10 8 10 10 7 2
## 175 8 6 5 4 3 6 1 1 2
## 176 5 8 7 7 10 5 7 1 2
## 177 2 1 1 1 2 3 1 1 1
## 178 5 10 10 3 8 5 10 3 2
## 179 4 1 1 1 2 3 1 1 1
## 180 5 3 3 3 6 3 1 1 2
## 181 1 1 1 1 1 3 1 1 1
## 182 1 1 1 1 2 1 1 1 1
## 183 6 1 1 1 2 3 1 1 1
## 184 5 8 8 8 5 7 8 1 2
## 185 8 7 6 4 4 5 1 1 2
## 186 2 1 1 1 1 3 1 1 1
## 187 1 5 8 6 5 7 10 1 2
## 188 10 5 6 10 6 7 7 10 2
## 189 5 8 4 10 5 9 10 1 2
## 190 1 2 3 1 2 3 1 1 1
## 191 10 10 10 8 6 7 10 1 2
## 192 7 5 10 10 10 4 10 3 2
## 193 5 1 1 1 2 2 1 1 1
## 194 1 1 1 1 2 3 1 1 1
## 195 3 1 1 1 2 3 1 1 1
## 196 4 1 1 1 2 3 1 1 1
## 197 8 4 4 5 4 7 8 2 1
## 198 5 1 1 4 2 3 1 1 1
## 199 1 1 1 1 2 1 1 1 1
## 200 3 1 1 1 2 2 1 1 1
## 201 9 7 7 5 5 7 8 3 2
## 202 10 8 8 4 10 8 1 1 2
## 203 1 1 1 1 2 3 1 1 1
## 204 5 1 1 1 2 3 1 1 1
## 205 1 1 1 1 2 3 1 1 1
## 206 5 10 10 9 6 7 10 5 2
## 207 10 10 9 3 7 3 5 1 2
## 208 1 1 1 1 1 3 1 1 1
## 209 1 1 1 1 1 3 1 1 1
## 210 5 1 1 1 1 3 1 1 1
## 211 8 10 10 10 5 8 10 6 2
## 212 8 10 8 8 4 7 7 1 2
## 213 1 1 1 1 2 3 1 1 1
## 214 10 10 10 10 7 7 10 4 2
## 215 10 10 10 10 3 10 6 1 2
## 216 8 7 8 7 5 5 10 2 2
## 217 1 1 1 1 2 2 1 1 1
## 218 1 1 1 1 2 3 1 1 1
## 219 6 10 7 7 6 8 10 2 2
## 220 6 1 3 1 2 3 1 1 1
## 221 1 1 1 2 2 3 1 1 1
## 222 10 6 4 3 10 9 10 1 2
## 223 4 1 1 3 1 2 1 1 2
## 224 7 5 6 3 3 7 4 1 2
## 225 10 5 5 6 3 7 9 2 2
## 226 1 1 1 1 2 2 1 1 1
## 227 10 5 7 4 4 8 9 1 2
## 228 8 9 9 5 3 7 7 1 2
## 229 1 1 1 1 1 3 1 1 1
## 230 10 10 10 3 10 9 10 1 2
## 231 7 4 7 4 3 7 6 1 2
## 232 6 8 7 5 6 8 9 2 2
## 233 8 4 6 3 3 4 3 1 1
## 234 10 4 5 5 5 4 1 1 2
## 235 3 3 2 1 3 3 6 1 1
## 236 3 1 4 1 2 3 1 1 1
## 237 10 8 8 2 8 4 8 10 2
## 238 9 8 8 5 6 4 10 4 2
## 239 8 10 10 8 6 3 10 10 2
## 240 10 4 3 2 3 5 3 2 2
## 241 5 1 3 3 2 2 3 1 1
## 242 3 1 1 3 1 3 1 1 1
## 243 2 1 1 1 2 3 1 1 1
## 244 1 1 1 1 2 5 1 1 1
## 245 1 1 1 1 2 3 1 1 1
## 246 5 1 1 2 2 3 1 1 1
## 247 8 10 10 8 5 7 8 1 2
## 248 8 4 4 1 2 3 3 1 2
## 249 4 1 1 1 2 3 6 1 1
## 250 3 1 1 1 2 3 1 1 1
## 251 1 2 2 1 2 1 1 1 1
## 252 10 4 4 10 2 5 3 3 2
## 253 6 3 3 5 3 3 5 3 1
## 254 6 10 10 2 8 7 3 3 2
## 255 9 10 10 1 10 3 3 1 2
## 256 5 6 6 2 4 3 6 1 2
## 257 3 1 1 1 2 1 1 1 1
## 258 3 1 1 1 2 2 1 1 1
## 259 3 1 1 1 2 3 1 1 1
## 260 5 7 7 1 5 3 4 1 1
## 261 10 5 8 10 3 5 1 3 2
## 262 5 10 10 6 10 10 6 5 2
## 263 8 8 9 4 5 7 8 1 2
## 264 10 4 4 10 6 5 5 1 2
## 265 7 9 4 10 10 5 3 3 2
## 266 5 1 4 1 2 3 2 1 1
## 267 10 10 6 3 3 4 3 2 2
## 268 3 3 5 2 3 7 1 1 2
## 269 10 8 8 2 3 8 7 8 2
## 270 1 1 1 1 2 3 1 1 1
## 271 8 4 7 1 3 3 9 2 2
## 272 5 1 1 1 2 3 1 1 1
## 273 3 3 5 2 3 7 1 1 2
## 274 7 2 4 1 3 3 3 1 2
## 275 3 1 1 1 2 3 2 1 1
## 276 3 1 3 1 2 2 1 1 1
## 277 3 1 1 1 2 2 1 1 1
## 278 1 1 1 1 2 2 1 1 1
## 279 1 1 1 1 2 3 1 1 1
## 280 10 5 7 3 3 3 3 8 2
## 281 3 1 1 1 2 3 1 1 1
## 282 2 1 1 2 2 3 1 1 1
## 283 1 4 3 10 4 5 6 1 2
## 284 10 4 6 1 2 5 3 1 2
## 285 7 4 5 10 2 3 8 2 2
## 286 8 10 10 10 8 10 7 3 2
## 287 10 10 10 10 10 4 10 10 2
## 288 3 1 1 1 3 2 1 1 1
## 289 6 1 3 1 4 5 10 1 2
## 290 5 6 6 8 6 4 10 4 2
## 291 1 1 1 1 2 1 1 1 1
## 292 1 1 1 1 2 3 1 1 1
## 293 8 8 8 1 2 6 10 1 2
## 294 10 4 4 6 2 2 3 1 2
## 295 1 1 1 1 2 2 1 1 1
## 296 5 5 7 8 6 7 4 1 2
## 297 5 3 4 3 4 4 7 1 1
## 298 5 4 3 1 2 2 3 1 1
## 299 8 2 1 1 5 1 1 1 1
## 300 9 1 2 6 4 7 7 2 2
## 301 8 4 10 5 4 7 10 1 2
## 302 1 1 1 1 2 3 1 1 1
## 303 10 10 10 7 9 7 10 10 2
## 304 1 1 1 1 2 3 1 1 1
## 305 8 3 4 9 3 3 3 1 2
## 306 10 8 4 4 4 3 10 4 2
## 307 1 1 1 1 2 3 1 1 1
## 308 1 1 1 1 2 3 1 1 1
## 309 7 8 7 6 4 8 8 4 2
## 310 3 1 1 1 2 5 1 1 1
## 311 2 1 1 1 3 2 1 1 1
## 312 1 1 1 1 2 1 1 1 1
## 313 8 6 4 10 10 3 5 1 2
## 314 1 1 1 1 2 1 1 1 1
## 315 1 1 1 1 1 2 1 1 1
## 316 4 6 5 6 7 4 9 1 1
## 317 5 5 5 2 5 4 3 1 2
## 318 6 8 7 8 6 8 9 1 2
## 319 1 1 1 1 5 3 1 1 1
## 320 4 4 4 4 6 7 3 1 1
## 321 7 6 3 2 5 7 4 6 2
## 322 3 1 1 1 2 3 1 1 1
## 323 3 1 1 1 2 3 1 1 1
## 324 5 4 6 10 2 4 1 1 2
## 325 1 1 1 1 2 3 1 1 1
## 326 3 2 2 1 2 2 3 1 1
## 327 10 1 1 1 2 5 4 1 2
## 328 1 1 1 1 2 2 1 1 1
## 329 8 10 3 2 6 3 10 1 2
## 330 10 4 6 4 5 7 1 1 2
## 331 10 4 7 2 2 6 1 1 2
## 332 5 1 1 1 2 3 1 2 1
## 333 5 2 2 2 2 2 2 1 1
## 334 5 4 6 6 4 4 3 1 2
## 335 8 6 7 3 3 3 4 2 2
## 336 1 1 1 1 2 1 1 1 1
## 337 6 5 5 8 4 3 4 1 2
## 338 1 1 1 1 2 3 1 1 1
## 339 1 1 1 1 1 2 1 1 1
## 340 8 5 5 5 2 4 3 1 2
## 341 10 3 3 1 2 7 6 1 2
## 342 1 1 1 1 2 3 1 1 1
## 343 2 1 1 1 2 1 1 1 1
## 344 1 1 1 1 2 1 1 1 1
## 345 7 6 4 8 10 9 5 3 2
## 346 1 1 1 1 2 1 1 1 1
## 347 5 2 2 2 3 1 3 1 1
## 348 1 1 1 1 1 1 3 1 1
## 349 3 4 4 10 5 3 3 1 2
## 350 4 2 3 5 3 7 6 1 2
## 351 5 1 1 3 2 1 1 1 1
## 352 2 1 1 1 2 3 1 1 1
## 353 3 4 5 3 7 4 6 1 1
## 354 2 7 10 10 7 4 9 4 2
## 355 1 1 1 1 2 2 1 1 1
## 356 4 1 1 1 3 2 2 1 1
## 357 5 3 3 1 3 3 3 3 2
## 358 8 10 10 7 10 7 3 8 2
## 359 8 10 5 3 8 4 10 3 2
## 360 10 3 5 4 3 3 5 3 2
## 361 6 10 10 10 10 8 10 10 2
## 362 3 10 3 10 6 5 1 4 2
## 363 3 2 2 1 4 2 1 1 1
## 364 4 4 4 2 2 2 1 1 1
## 365 2 1 1 1 2 3 1 1 1
## 366 2 1 1 1 2 2 1 1 1
## 367 6 10 10 10 8 7 10 7 2
## 368 5 8 8 10 5 8 10 3 2
## 369 1 1 3 1 2 1 1 1 1
## 370 1 1 3 1 1 2 1 1 1
## 371 4 3 2 1 3 2 1 1 1
## 372 1 1 3 1 2 1 1 1 1
## 373 4 1 2 1 2 2 1 1 1
## 374 5 1 1 2 2 2 1 1 1
## 375 3 1 2 1 2 2 1 1 1
## 376 1 1 1 1 2 1 1 1 1
## 377 1 1 1 1 2 2 1 1 1
## 378 1 1 1 1 1 2 1 1 1
## 379 3 1 1 4 3 2 2 1 1
## 380 5 3 4 1 4 3 1 1 1
## 381 1 1 1 1 2 1 1 1 1
## 382 10 6 3 6 4 7 8 4 2
## 383 3 2 2 2 2 3 2 1 1
## 384 2 1 1 1 2 1 1 1 1
## 385 2 1 1 1 2 1 1 1 1
## 386 3 3 2 2 3 1 2 3 1
## 387 7 6 6 3 2 7 1 1 2
## 388 5 3 3 2 3 3 1 1 1
## 389 2 1 1 1 2 2 2 1 1
## 390 5 1 1 1 3 2 2 1 1
## 391 1 1 1 2 2 2 1 1 1
## 392 10 8 7 4 3 7 9 1 2
## 393 3 1 1 1 2 2 1 1 1
## 394 1 1 1 1 1 1 1 1 1
## 395 1 2 3 1 2 2 1 1 1
## 396 3 1 1 1 2 2 1 1 1
## 397 3 1 1 1 2 3 1 1 1
## 398 4 1 1 1 2 1 1 1 1
## 399 3 2 1 1 2 2 2 1 1
## 400 1 2 3 1 2 1 1 1 1
## 401 3 10 8 7 6 9 3 8 2
## 402 3 1 1 1 2 1 1 1 1
## 403 5 3 3 1 2 2 1 1 1
## 404 3 1 1 1 2 1 1 1 1
## 405 1 2 1 3 2 1 2 1 1
## 406 1 1 1 1 2 2 1 1 1
## 407 4 2 2 1 2 2 1 1 1
## 408 1 1 1 1 2 2 1 1 1
## 409 2 3 2 2 2 3 1 1 1
## 410 3 1 2 1 2 2 1 1 1
## 411 1 1 1 1 2 2 1 1 1
## 412 1 1 1 1 1 2 1 1 1
## 413 10 10 10 6 8 8 5 1 2
## 414 5 1 2 1 2 3 1 1 1
## 415 8 5 6 2 3 6 6 1 2
## 416 3 3 2 6 3 3 5 1 1
## 417 8 7 8 5 10 7 2 1 2
## 418 1 1 1 1 2 2 1 1 1
## 419 5 2 2 2 2 3 2 2 1
## 420 2 3 1 1 5 1 1 1 1
## 421 3 2 2 3 2 3 1 1 1
## 422 10 10 10 7 10 8 2 1 2
## 423 4 3 3 1 2 3 3 1 1
## 424 5 1 3 1 2 2 1 1 1
## 425 3 1 1 1 2 1 1 1 1
## 426 9 10 10 10 10 10 10 1 2
## 427 5 3 6 1 2 1 1 1 1
## 428 8 7 8 2 4 5 10 1 2
## 429 1 1 1 1 2 2 1 1 1
## 430 2 1 1 1 2 2 1 1 1
## 431 1 3 1 1 2 2 2 1 1
## 432 5 1 1 3 4 3 2 1 1
## 433 5 1 1 1 2 2 2 1 1
## 434 3 2 2 3 2 1 1 1 1
## 435 6 9 7 5 5 4 2 1 1
## 436 10 8 10 1 3 5 1 1 2
## 437 10 10 10 1 6 2 8 1 2
## 438 4 1 1 1 2 1 1 1 1
## 439 4 1 3 3 2 1 1 1 1
## 440 5 1 1 1 2 1 1 1 1
## 441 10 4 3 10 4 10 1 1 2
## 442 5 2 2 4 2 1 1 1 1
## 443 1 1 1 3 2 1 1 1 1
## 444 1 1 1 1 2 1 1 1 1
## 445 5 1 1 6 3 2 1 1 1
## 446 2 1 1 1 2 1 1 1 1
## 447 1 1 1 1 2 1 1 1 1
## 448 5 1 1 1 2 1 1 1 1
## 449 1 1 1 1 1 1 1 1 1
## 450 5 7 9 8 6 8 10 1 2
## 451 4 1 1 3 1 2 1 1 1
## 452 5 1 1 1 2 1 1 1 1
## 453 3 1 1 3 2 1 1 1 1
## 454 4 5 5 8 6 10 7 1 2
## 455 2 3 1 1 3 1 1 1 1
## 456 10 2 2 1 2 1 1 2 2
## 457 10 6 5 8 5 8 6 1 2
## 458 8 8 9 6 6 10 10 1 2
## 459 5 1 2 1 2 1 1 1 1
## 460 5 1 3 1 2 1 1 1 1
## 461 5 1 1 3 2 1 1 1 1
## 462 3 1 1 1 2 1 1 1 1
## 463 6 1 1 3 2 1 1 1 1
## 464 4 1 1 1 2 1 2 1 1
## 465 4 1 1 1 2 1 1 1 1
## 466 10 9 8 7 6 7 10 3 2
## 467 10 6 6 2 4 9 7 1 2
## 468 6 6 6 5 4 7 6 2 2
## 469 4 1 1 1 2 1 1 1 1
## 470 1 1 2 1 2 2 1 1 1
## 471 3 1 1 1 1 2 1 1 1
## 472 6 1 1 3 2 1 1 1 1
## 473 6 1 1 1 1 1 1 1 1
## 474 4 1 1 1 2 1 1 1 1
## 475 5 1 1 1 2 1 1 1 1
## 476 3 1 1 1 2 1 1 1 1
## 477 4 1 2 1 2 1 1 1 1
## 478 4 1 1 1 2 1 1 1 1
## 479 5 2 1 1 2 1 1 1 1
## 480 4 8 7 10 4 7 5 1 2
## 481 5 1 1 1 1 1 1 1 1
## 482 5 3 2 4 2 1 1 1 1
## 483 9 10 10 10 10 10 10 10 2
## 484 8 7 8 5 5 9 10 1 2
## 485 5 1 2 1 2 1 1 1 1
## 486 1 1 1 3 1 1 1 1 1
## 487 3 1 1 1 1 2 1 1 1
## 488 10 10 10 10 6 8 1 5 2
## 489 3 6 4 10 3 3 4 1 2
## 490 6 3 2 1 3 4 1 1 2
## 491 1 1 1 1 2 1 1 1 1
## 492 5 8 9 4 3 7 1 1 2
## 493 4 1 1 1 1 2 1 1 1
## 494 5 10 10 10 6 6 5 2 2
## 495 5 1 2 10 4 2 1 1 1
## 496 3 1 1 1 1 2 1 1 1
## 497 1 1 1 1 1 1 1 1 1
## 498 4 2 1 1 2 1 1 1 1
## 499 4 1 1 1 2 2 1 1 1
## 500 4 1 1 1 2 2 1 1 1
## 501 6 1 1 1 2 3 1 1 1
## 502 4 1 1 1 2 2 1 1 1
## 503 4 1 1 2 2 2 1 1 1
## 504 4 1 1 1 2 3 1 1 1
## 505 1 1 1 1 2 1 1 1 1
## 506 3 3 1 1 2 1 1 1 1
## 507 8 10 10 10 7 4 8 7 2
## 508 1 1 1 1 2 1 1 1 1
## 509 5 1 1 1 2 1 1 1 1
## 510 2 1 1 1 2 1 1 1 1
## 511 1 1 1 1 2 1 1 1 1
## 512 5 1 1 1 2 2 1 1 1
## 513 5 1 1 1 2 1 1 1 1
## 514 3 1 1 1 1 2 1 1 1
## 515 6 6 7 10 3 8 10 2 2
## 516 4 10 4 7 3 9 10 1 2
## 517 1 1 1 1 1 1 1 1 1
## 518 1 1 1 1 1 2 1 1 1
## 519 3 1 2 2 2 1 1 1 1
## 520 4 7 8 3 4 9 1 1 2
## 521 1 1 1 1 3 1 1 1 1
## 522 4 1 1 1 3 1 1 1 1
## 523 10 4 5 4 3 7 3 1 2
## 524 7 5 6 10 4 5 3 1 2
## 525 3 1 1 1 2 2 1 1 1
## 526 3 1 1 2 2 1 1 1 1
## 527 4 1 1 1 2 1 1 1 1
## 528 4 1 1 1 2 3 1 1 1
## 529 6 1 3 2 2 1 1 1 1
## 530 4 1 1 1 1 2 1 1 1
## 531 7 4 4 3 4 6 9 1 2
## 532 4 2 2 1 2 2 1 1 1
## 533 1 1 1 1 1 3 1 1 1
## 534 3 1 1 1 2 2 1 1 1
## 535 2 1 1 1 2 2 1 1 1
## 536 1 1 3 2 2 3 1 1 1
## 537 5 1 1 1 2 3 1 1 1
## 538 5 1 2 1 2 3 1 1 1
## 539 4 1 1 1 2 2 1 1 1
## 540 6 1 1 1 2 2 1 1 1
## 541 5 1 1 1 2 2 1 1 1
## 542 3 1 1 1 2 1 1 1 1
## 543 5 3 1 1 2 1 1 1 1
## 544 4 1 1 1 2 2 1 1 1
## 545 2 1 3 2 2 2 1 1 1
## 546 5 1 1 1 2 2 1 1 1
## 547 6 10 10 10 4 7 10 1 2
## 548 2 1 1 1 1 1 1 1 1
## 549 3 1 1 1 1 1 1 1 1
## 550 7 8 3 7 4 7 8 2 2
## 551 3 1 1 1 2 2 1 1 1
## 552 1 1 1 1 2 3 1 1 1
## 553 3 2 2 2 2 4 2 1 1
## 554 4 4 2 1 2 2 1 2 1
## 555 3 1 1 1 2 1 1 1 1
## 556 4 3 1 1 2 4 8 1 1
## 557 5 2 2 2 1 2 1 1 1
## 558 5 1 1 3 2 1 1 1 1
## 559 2 1 1 1 2 2 1 1 1
## 560 5 1 1 1 2 2 1 1 1
## 561 5 1 1 1 2 3 1 1 1
## 562 5 1 1 1 2 3 1 1 1
## 563 1 1 1 1 2 3 1 1 1
## 564 3 1 1 1 2 2 1 1 1
## 565 4 1 1 1 2 3 2 1 1
## 566 5 7 10 10 5 10 10 1 2
## 567 3 1 2 1 2 3 1 1 1
## 568 4 1 1 1 2 2 1 1 1
## 569 8 4 4 1 6 2 5 2 2
## 570 10 10 8 10 6 10 3 1 2
## 571 8 10 4 4 8 8 2 1 2
## 572 7 6 10 5 3 9 10 2 2
## 573 3 1 1 1 2 2 1 1 1
## 574 1 1 1 1 2 2 1 1 1
## 575 10 9 7 3 4 7 7 1 2
## 576 5 1 2 1 2 3 1 1 1
## 577 5 1 1 1 2 2 1 1 1
## 578 1 1 1 1 2 2 1 1 1
## 579 1 1 1 1 2 2 1 1 1
## 580 1 1 1 1 2 3 1 1 1
## 581 5 1 2 1 2 2 1 1 1
## 582 5 7 10 6 5 7 5 1 2
## 583 6 10 5 5 4 6 10 1 2
## 584 3 1 1 1 2 1 1 1 1
## 585 5 1 1 6 3 1 1 1 1
## 586 1 1 1 1 2 1 1 1 1
## 587 8 10 10 10 6 10 10 1 2
## 588 5 1 1 1 2 2 2 1 1
## 589 9 8 8 9 6 4 1 1 2
## 590 5 1 1 1 2 1 1 1 1
## 591 4 10 8 5 4 10 1 1 2
## 592 2 5 7 6 4 7 6 1 2
## 593 10 3 4 5 3 4 1 1 2
## 594 5 1 2 1 2 1 1 1 1
## 595 4 8 6 3 4 7 1 1 2
## 596 5 1 1 1 2 2 1 1 1
## 597 4 1 2 1 2 2 1 1 1
## 598 5 1 3 1 2 3 1 1 1
## 599 3 1 1 1 2 2 1 1 1
## 600 5 2 4 1 1 1 1 1 1
## 601 3 1 1 1 2 2 1 1 1
## 602 1 1 1 1 1 2 1 1 1
## 603 4 1 1 1 2 2 1 1 1
## 604 5 4 6 8 4 8 10 1 2
## 605 5 3 2 8 5 8 1 2 2
## 606 10 5 10 3 5 7 8 3 2
## 607 4 1 1 2 2 1 1 1 1
## 608 1 1 1 1 2 1 1 1 1
## 609 5 10 10 10 10 10 1 1 2
## 610 5 1 1 1 2 1 1 1 1
## 611 10 4 3 10 3 7 1 2 2
## 612 5 10 10 10 5 8 5 1 2
## 613 8 10 10 10 6 10 10 10 2
## 614 2 3 1 1 2 2 1 1 1
## 615 2 1 1 1 1 2 1 1 1
## 616 4 1 3 1 2 2 1 1 1
## 617 3 1 1 1 2 2 1 1 1
## 618 1 1 1 1 1 1 1 1 1
## 619 4 1 1 1 2 2 1 1 1
## 620 5 1 1 1 2 2 1 1 1
## 621 3 1 1 1 2 2 1 1 1
## 622 6 3 3 3 3 6 1 1 1
## 623 7 1 2 3 2 2 1 1 1
## 624 1 1 1 1 2 1 1 1 1
## 625 5 1 1 2 1 2 1 1 1
## 626 3 1 3 1 3 1 1 1 1
## 627 4 6 6 5 7 7 7 3 2
## 628 2 1 1 1 2 1 1 1 1
## 629 2 1 1 1 2 1 1 1 1
## 630 4 1 1 1 2 1 1 1 1
## 631 6 2 3 1 2 1 1 1 1
## 632 5 1 1 1 2 2 1 1 1
## 633 1 1 1 1 2 1 1 1 1
## 634 8 7 4 4 5 5 10 1 2
## 635 3 1 1 1 2 1 1 1 1
## 636 3 1 4 1 2 1 1 1 1
## 637 10 10 7 8 7 10 10 3 2
## 638 4 2 4 3 2 2 1 1 1
## 639 4 1 1 1 2 1 1 1 1
## 640 5 1 1 3 2 1 1 1 1
## 641 4 1 1 3 2 1 1 1 1
## 642 3 1 1 1 2 2 1 1 1
## 643 3 1 1 1 2 2 1 1 1
## 644 1 1 1 1 2 1 1 1 1
## 645 2 1 1 1 2 1 1 1 1
## 646 3 1 1 1 2 2 1 1 1
## 647 1 2 2 1 2 1 1 1 1
## 648 1 1 1 3 2 1 1 1 1
## 649 5 10 10 10 10 10 10 10 2
## 650 3 1 1 1 2 2 1 1 1
## 651 3 1 1 2 3 1 1 1 1
## 652 1 2 1 3 2 2 1 1 1
## 653 5 1 1 1 2 2 2 1 1
## 654 4 1 1 1 2 2 1 1 1
## 655 3 1 1 1 2 3 1 1 1
## 656 3 1 1 1 2 2 1 1 1
## 657 5 1 1 1 2 2 1 1 1
## 658 5 4 5 1 8 3 6 1 1
## 659 7 8 8 7 3 7 2 3 2
## 660 1 1 1 1 2 1 1 1 1
## 661 1 1 1 1 2 2 1 1 1
## 662 4 1 1 1 2 3 1 1 1
## 663 1 1 3 1 2 2 1 1 1
## 664 1 1 3 1 2 2 1 1 1
## 665 3 1 1 3 2 2 1 1 1
## 666 1 1 1 1 2 1 1 1 1
## 667 5 2 2 2 2 1 1 2 1
## 668 3 1 1 1 2 3 1 1 1
## 669 5 7 4 1 6 7 10 3 2
## 670 5 10 10 8 5 7 10 1 2
## 671 3 10 7 8 5 7 4 1 2
## 672 3 2 1 2 2 3 1 1 1
## 673 2 1 1 1 2 3 1 1 1
## 674 5 3 2 1 3 1 1 1 1
## 675 1 1 1 1 2 2 1 1 1
## 676 4 1 4 1 2 1 1 1 1
## 677 1 1 2 1 2 2 1 1 1
## 678 5 1 1 1 2 1 1 1 1
## 679 1 1 1 1 2 1 1 1 1
## 680 2 1 1 1 2 1 1 1 1
## 681 10 10 10 10 5 10 10 7 2
## 682 5 10 10 10 4 5 6 3 2
## 683 5 1 1 1 2 3 2 1 1
## 684 1 1 1 1 2 1 1 1 1
## 685 1 1 1 1 2 1 1 1 1
## 686 1 1 1 1 2 1 1 1 1
## 687 1 1 1 1 2 1 1 1 1
## 688 3 1 1 1 2 2 3 1 1
## 689 4 1 1 1 2 1 1 1 1
## 690 1 1 1 1 2 1 1 8 1
## 691 1 1 1 3 2 1 1 1 1
## 692 5 10 10 5 4 4 4 1 2
## 693 3 1 1 1 2 1 1 1 1
## 694 3 1 1 1 2 2 1 2 1
## 695 3 1 1 1 3 1 1 1 1
## 696 2 1 1 1 2 1 1 1 1
## 697 5 10 10 3 7 8 10 2 2
## 698 4 8 6 4 3 10 6 1 2
## 699 4 8 8 5 4 10 4 1 2
set.seed(123)
split = sample.split(df$V11, SplitRatio = 0.7)
training_set = subset(df, split == TRUE)
test_set = subset(df, split == FALSE)
classifier = glm(V11 ~., training_set, family = binomial)
summary(classifier)
##
## Call:
## glm(formula = V11 ~ ., family = binomial, data = training_set)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.3476 -0.1292 -0.0772 0.0302 2.2627
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -9.59512 1.16741 -8.219 < 2e-16 ***
## V2 0.47900 0.15688 3.053 0.00226 **
## V3 0.04879 0.18747 0.260 0.79469
## V4 0.72113 0.22617 3.188 0.00143 **
## V5 0.20877 0.13195 1.582 0.11360
## V6 0.18009 0.17400 1.035 0.30067
## V8 0.49784 0.17388 2.863 0.00420 **
## V9 0.10696 0.11438 0.935 0.34973
## V10 0.40112 0.36497 1.099 0.27175
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 631.346 on 489 degrees of freedom
## Residual deviance: 93.381 on 481 degrees of freedom
## AIC: 111.38
##
## Number of Fisher Scoring iterations: 8
prob_pred = predict(classifier, type = 'response', test_set[ ,-9] )
y_pred = ifelse(prob_pred > 0.5, 1, 0)
cm = table(test_set$V11, y_pred)
cm
## y_pred
## 0 1
## 1 133 4
## 2 7 65
training_set[ ,1:8] = scale(training_set[ , 1:8])
test_set[ ,1:8] = scale(test_set[ , 1:8])
classifier = glm(V11 ~., training_set, family = binomial)
summary(classifier)
##
## Call:
## glm(formula = V11 ~ ., family = binomial, data = training_set)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.3476 -0.1292 -0.0772 0.0302 2.2627
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.1352 0.3444 -3.296 0.000982 ***
## V2 1.3243 0.4337 3.053 0.002263 **
## V3 0.1495 0.5747 0.260 0.794685
## V4 2.1332 0.6690 3.188 0.001430 **
## V5 0.5847 0.3696 1.582 0.113603
## V6 0.4069 0.3931 1.035 0.300669
## V8 1.2518 0.4372 2.863 0.004196 **
## V9 0.3318 0.3548 0.935 0.349731
## V10 0.6942 0.6316 1.099 0.271749
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 631.346 on 489 degrees of freedom
## Residual deviance: 93.381 on 481 degrees of freedom
## AIC: 111.38
##
## Number of Fisher Scoring iterations: 8
prob_pred = predict(classifier, type = 'response', test_set[ ,-9] )
y_pred = ifelse(prob_pred > 0.5, 1, 0)
cm = table(test_set$V11, y_pred)
cm
## y_pred
## 0 1
## 1 133 4
## 2 5 67