Analiza el conjunto de datos de co2.csv cargado de https://www.kaggle.com/tedllh/co2csv y la práctica emulada de https://rpubs.com/palominoM/series
# install.packages("tseries")
# install.packages("forecast")
library(forecast)
library(tseries)
co2 <- read.csv("~/Mis clases ITD/Semestre Enero Junio 2020/Analisis Inteligente de Datos/datos/co2csv/co2.csv", header = TRUE, sep = ",")
head(co2)
## X CO2 Day
## 1 1 377.04 91
## 2 2 375.52 92
## 3 3 380.69 93
## 4 4 379.21 94
## 5 5 377.12 95
## 6 6 378.38 96
tail(co2)
## X CO2 Day
## 237 237 379.89 334
## 238 238 382.62 335
## 239 239 386.48 336
## 240 240 388.31 337
## 241 241 384.71 338
## 242 242 376.27 339
co2ts<-ts(co2$CO2, start = c(2000,1), frequency = 12)
print(co2ts)
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct
## 2000 377.04 375.52 380.69 379.21 377.12 378.38 379.44 376.07 377.81 380.13
## 2001 377.29 378.17 378.92 378.14 382.36 377.56 377.15 375.64 379.56 380.49
## 2002 373.28 378.14 373.93 376.37 371.84 376.39 374.60 372.07 386.03 379.18
## 2003 367.73 369.39 370.86 371.96 368.79 369.70 372.56 391.80 373.76 376.22
## 2004 366.21 362.38 365.18 367.40 367.93 369.41 371.67 372.61 373.95 374.46
## 2005 368.85 371.64 369.79 372.24 378.29 373.13 369.34 363.30 365.49 360.64
## 2006 371.85 363.79 361.74 362.77 370.70 370.94 365.05 363.13 364.46 376.14
## 2007 369.22 366.28 364.47 365.04 364.03 361.05 369.17 373.33 368.98 362.31
## 2008 367.59 365.94 368.99 377.53 375.39 366.16 361.43 362.31 368.38 355.80
## 2009 362.91 363.81 361.53 362.08 363.65 366.78 366.29 369.21 363.68 371.12
## 2010 361.91 367.21 367.00 367.72 366.40 362.70 359.46 358.72 357.61 362.07
## 2011 364.64 372.31 370.78 377.23 374.36 367.08 368.31 366.20 365.76 374.41
## 2012 359.16 370.93 372.75 366.94 360.86 372.01 367.12 365.39 369.99 367.26
## 2013 365.68 369.29 366.17 365.95 368.49 367.96 367.21 369.93 362.48 367.20
## 2014 366.37 379.25 377.22 375.00 369.47 366.44 362.60 378.62 374.53 375.82
## 2015 366.10 373.90 373.61 374.91 377.30 374.89 372.10 368.31 365.65 367.99
## 2016 374.89 379.22 375.20 375.87 384.68 376.52 370.63 380.63 379.66 374.57
## 2017 382.35 378.56 374.25 376.10 374.73 372.95 374.84 383.67 381.89 377.06
## 2018 373.78 374.40 379.05 382.79 374.48 374.39 376.83 376.50 386.90 382.62
## 2019 384.71 376.27 383.93 389.19 395.03 391.24 382.23 382.43 379.89 382.62
## 2020 384.71 376.27
## Nov Dec
## 2000 376.79 378.04
## 2001 374.41 373.46
## 2002 374.71 370.40
## 2003 368.45 366.91
## 2004 375.49 367.54
## 2005 368.58 369.97
## 2006 367.91 364.12
## 2007 375.79 364.99
## 2008 357.82 359.44
## 2009 374.31 365.75
## 2010 368.30 369.43
## 2011 360.65 361.80
## 2012 364.88 365.76
## 2013 370.66 369.98
## 2014 376.83 374.03
## 2015 378.41 382.06
## 2016 380.81 383.32
## 2017 373.13 373.89
## 2018 386.48 388.31
## 2019 386.48 388.31
## 2020
class(co2ts)
## [1] "ts"
plot(co2ts, xlab="Años", ylab='co2')