L-A First Course in Linear Algebra

Chapter E: Eigenvalues

Section EE

Subsection ECEE

Page 388
C24

C24 Find the eigenvalues, eigenspaces, algebraic and geometric multiplicities for

\[\mathbf{A} = \left[\begin{array}{rrr}1 & -1 & 1\\-1 & 1 & -1\\1 & -1 & 1\end{array}\right] \]

## [1] "A="
##      [,1] [,2] [,3]
## [1,]    1   -1    1
## [2,]   -1    1   -1
## [3,]    1   -1    1

(a) Find eigenvalues

## [1] "eigenvalues includes: 3" "eigenvalues includes: 0"
## [3] "eigenvalues includes: 0"
## Error term: 0
## [1] "eigenvalues includes: 0" "eigenvalues includes: 0"
## [3] "eigenvalues includes: 3"

(b) Find eigenspaces

## [1] "eigenspace for eigenvalue = 3"
##            [,1]
## [1,]  0.5773503
## [2,] -0.5773503
## [3,]  0.5773503
## [1] "eigenspace for eigenvalue = 0"
##           [,1]       [,2]
## [1,] 0.5773503 -0.5773503
## [2,] 0.7886751  0.2113249
## [3,] 0.2113249  0.7886751
## [1] "eigenspace for eigenvalue = 3"
##      [,1] [,2] [,3]
## [1,]    1    0   -1
## [2,]    0    1    1
## [3,]    0    0    0
## [1] "eigenspace for eigenvalue = 0"
##      [,1] [,2] [,3]
## [1,]    1   -1    1
## [2,]    0    0    0
## [3,]    0    0    0
## [1] "eigenspace for eigenvalue = 3"
##      [,1]
## [1,]    1
## [2,]   -1
## [3,]    1
## [1] "eigenspace for eigenvalue = 0"
##      [,1] [,2]
## [1,]    1    1
## [2,]    0   -1
## [3,]    0    1

(c) Find algebraic multiplicities

Characteristic Polynomials is : \[ -(x-3)x^2 \]

Algebraic multiplicities : \[ \alpha_A(3)=1 \] and \[ \alpha_A(0)=2 \]

(d) Find geometric multiplicities

So the eigenspace dimensions yield geometric multiplicities: \[ \gamma_A(3)=1 \] and \[ \gamma_C(0)=2\]