C24 Find the eigenvalues, eigenspaces, algebraic and geometric multiplicities for
\[\mathbf{A} = \left[\begin{array}{rrr}1 & -1 & 1\\-1 & 1 & -1\\1 & -1 & 1\end{array}\right] \]
## [1] "A="
## [,1] [,2] [,3]
## [1,] 1 -1 1
## [2,] -1 1 -1
## [3,] 1 -1 1
(a) Find eigenvalues
eigen_a <- eigen(A)
eigenvalue <- eigen_a$values
print(paste("eigenvalues includes:",round(eigenvalue)))## [1] "eigenvalues includes: 3" "eigenvalues includes: 0"
## [3] "eigenvalues includes: 0"
suppressWarnings(suppressMessages(library(pracma)))
polyn <- charpoly(A,info=T) # find the characteristic polynomial## Error term: 0
ev <- roots(polyn$cp) # eigenvalues are the roots of characteristic polynomials
print(paste("eigenvalues includes:",ev))## [1] "eigenvalues includes: 0" "eigenvalues includes: 0"
## [3] "eigenvalues includes: 3"
(b) Find eigenspaces
I3 <- matrix(c(1,0,0, 0,1,0, 0,0,1), nrow=3, ncol=3, byrow=TRUE)
print("eigenspace for eigenvalue = 3")## [1] "eigenspace for eigenvalue = 3"
## [,1]
## [1,] 0.5773503
## [2,] -0.5773503
## [3,] 0.5773503
## [1] "eigenspace for eigenvalue = 0"
## [,1] [,2]
## [1,] 0.5773503 -0.5773503
## [2,] 0.7886751 0.2113249
## [3,] 0.2113249 0.7886751
## [1] "eigenspace for eigenvalue = 3"
## [,1] [,2] [,3]
## [1,] 1 0 -1
## [2,] 0 1 1
## [3,] 0 0 0
## [1] "eigenspace for eigenvalue = 0"
## [,1] [,2] [,3]
## [1,] 1 -1 1
## [2,] 0 0 0
## [3,] 0 0 0
## [1] "eigenspace for eigenvalue = 3"
## [,1]
## [1,] 1
## [2,] -1
## [3,] 1
## [1] "eigenspace for eigenvalue = 0"
## [,1] [,2]
## [1,] 1 1
## [2,] 0 -1
## [3,] 0 1
(c) Find algebraic multiplicities
Characteristic Polynomials is : \[ -(x-3)x^2 \]
Algebraic multiplicities : \[ \alpha_A(3)=1 \] and \[ \alpha_A(0)=2 \]
(d) Find geometric multiplicities
So the eigenspace dimensions yield geometric multiplicities: \[ \gamma_A(3)=1 \] and \[ \gamma_C(0)=2\]