Load Packages
Problem Statement
The problem C11, selected page 388,
Find the characteristic polynomial of the matrix.
## [,1] [,2] [,3]
## [1,] 3 2 1
## [2,] 0 1 1
## [3,] 1 2 0
Solution using R
## [1] 1 -4 0 5
Which gives us the characteristic polynomial as
\({ PA(x)\quad =\quad λ }^{ 3 }-4{ λ }^{ 2 }+5\)
Solution by hand
Let’s find the characteristic polynomial of a 3x3 matrix. Let
\(A=\begin{vmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{vmatrix}\)
To get the eigenvalues, we need to solve
\(det(\begin{vmatrix} λ & 0 & 0 \\ 0 & λ & 0 \\ 0 & 0 & λ \end{vmatrix}-\begin{vmatrix} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{vmatrix})\quad =\quad 0\)
That is
\(det(\begin{vmatrix} λ-3 & -2 & -1 \\ 0 & λ-1 & -1 \\ -1 & -2 & λ \end{vmatrix})\quad =\quad 0\)
Solving determinant
\((λ-3)\begin{vmatrix} λ-1 & -1 \\ -2 & λ \end{vmatrix}-(-2)\begin{vmatrix} 0 & -1 \\ -1 & λ \end{vmatrix}+(-1)\begin{vmatrix} 0 & λ-1 \\ -1 & -2 \end{vmatrix}\quad =\quad 0\)
\((λ-3)\left[ ({ λ }^{ 2 }-λ)-2 \right] +2(λ-1)+2+(-λ+1)\quad =\quad 0\\ { λ }^{ 3 }-{ λ }^{ 2 }-2λ-3{ λ }^{ 2 }+3{ λ }+6+2{ λ }-2-{ λ }+1\quad =\quad 0\\ { λ }^{ 3 }-4{ λ }^{ 2 }+5\quad =\quad 0\)
Which gives us the characteristic polynomial as
\({ PA(x)\quad =\quad λ }^{ 3 }-4{ λ }^{ 2 }+5\)