Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
## ── Attaching packages ───────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.4
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## ── Conflicts ──────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidyquant) # for financial analysis
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## ══ Need to Learn tidyquant? ══════════════════════════════════════
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-10")
stocks
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
A character object is used to represent a string of values in R. An example of character data would be " aws ". An example logical data would be true, or false.
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
Since the beginning of 2019 Netflix stock shot up in price from aproximently 250 usd to 350 usd and stayed around that price for some time. It then dropped to its previous low in 2019 and went on a run from there into 2020 at around 350 usd.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-10")
stocks
## # A tibble: 776 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-10 131. 132. 129. 130. 5985800 130.
## 2 2017-01-11 131. 132. 129. 130. 5615100 130.
## 3 2017-01-12 131. 131. 128. 129. 5388900 129.
## 4 2017-01-13 131. 134. 131. 134. 10515000 134.
## 5 2017-01-17 135. 135. 132. 133. 12220200 133.
## 6 2017-01-18 133. 134. 131. 133. 16168600 133.
## 7 2017-01-19 142. 143. 138. 138. 23203400 138.
## 8 2017-01-20 139. 141. 138. 139. 9497400 139.
## 9 2017-01-23 139. 139. 137. 137. 7433900 137.
## 10 2017-01-24 138. 141. 137. 140. 7754700 140.
## # … with 766 more rows
## Import data
stocks <- tq_get("AMZN", get = "stock.prices", from = "2017-01-10")
stocks
## # A tibble: 776 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-10 797. 798 790. 796. 2558400 796.
## 2 2017-01-11 794. 800. 790. 799. 2992800 799.
## 3 2017-01-12 800. 814. 800. 814. 4873900 814.
## 4 2017-01-13 814. 822. 811. 817. 3791900 817.
## 5 2017-01-17 816. 816 803. 810. 3670500 810.
## 6 2017-01-18 810. 812. 804. 807. 2354200 807.
## 7 2017-01-19 810 814. 807. 809. 2540800 809.
## 8 2017-01-20 815. 816. 806. 808. 3376200 808.
## 9 2017-01-23 807. 818. 805. 818. 2797500 818.
## 10 2017-01-24 822 824. 814. 822. 2971700 822.
## # … with 766 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.