Use the given code below to answer the questions.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,033 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 109 110 105. 110. 20794800 110.
## 2 2016-01-05 110. 111. 106. 108. 17664600 108.
## 3 2016-01-06 105. 118. 105. 118. 33045700 118.
## 4 2016-01-07 116. 122. 112. 115. 33636700 115.
## 5 2016-01-08 116. 118. 111. 111. 18067100 111.
## 6 2016-01-11 112. 117. 111. 115. 21920400 115.
## 7 2016-01-12 116. 118. 115. 117. 15133500 117.
## 8 2016-01-13 114. 114. 105. 107. 24921600 107.
## 9 2016-01-14 106. 109. 101. 107. 23664800 107.
## 10 2016-01-15 102. 106. 102. 104. 19775100 104.
## # … with 1,023 more rows
An example of logical data would be echo=False or True. An example of character data would be like tq_get or tidyquant is an example of character data.
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
```
The Netflix stock decreased dramatically in the start of year 2019 but started to increase as the year went on and was pretty steady. Unitl it got closer to the year of 2020. Then increased again in 2020.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AMZN", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,033 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 656. 658. 628. 637. 9314500 637.
## 2 2016-01-05 647. 647. 628. 634. 5822600 634.
## 3 2016-01-06 622 640. 620. 633. 5329200 633.
## 4 2016-01-07 622. 630 605. 608. 7074900 608.
## 5 2016-01-08 620. 624. 606 607. 5512900 607.
## 6 2016-01-11 612. 620. 599. 618. 4891600 618.
## 7 2016-01-12 625. 626. 612. 618. 4724100 618.
## 8 2016-01-13 621. 621. 579. 582. 7655200 582.
## 9 2016-01-14 580. 602. 570. 593 7238000 593
## 10 2016-01-15 572. 585. 565. 570. 7784500 570.
## # … with 1,023 more rows
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,033 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 109 110 105. 110. 20794800 110.
## 2 2016-01-05 110. 111. 106. 108. 17664600 108.
## 3 2016-01-06 105. 118. 105. 118. 33045700 118.
## 4 2016-01-07 116. 122. 112. 115. 33636700 115.
## 5 2016-01-08 116. 118. 111. 111. 18067100 111.
## 6 2016-01-11 112. 117. 111. 115. 21920400 115.
## 7 2016-01-12 116. 118. 115. 117. 15133500 117.
## 8 2016-01-13 114. 114. 105. 107. 24921600 107.
## 9 2016-01-14 106. 109. 101. 107. 23664800 107.
## 10 2016-01-15 102. 106. 102. 104. 19775100 104.
## # … with 1,023 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.