Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,033 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 103. 105. 102 105. 67649400 98.2
## 2 2016-01-05 106. 106. 102. 103. 55791000 95.8
## 3 2016-01-06 101. 102. 99.9 101. 68457400 93.9
## 4 2016-01-07 98.7 100. 96.4 96.4 81094400 89.9
## 5 2016-01-08 98.6 99.1 96.8 97.0 70798000 90.4
## 6 2016-01-11 99.0 99.1 97.3 98.5 49739400 91.9
## 7 2016-01-12 101. 101. 98.8 100. 49154200 93.2
## 8 2016-01-13 100. 101. 97.3 97.4 62439600 90.8
## 9 2016-01-14 98.0 100. 95.7 99.5 63170100 92.8
## 10 2016-01-15 96.2 97.7 95.4 97.1 79833900 90.6
## # … with 1,023 more rows
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-01")
stocks
## # A tibble: 781 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-03 125. 128. 124. 127. 9437900 127.
## 2 2017-01-04 127. 130. 127. 129. 7843600 129.
## 3 2017-01-05 129. 133. 129. 132. 10185500 132.
## 4 2017-01-06 132. 134. 130. 131. 10657900 131.
## 5 2017-01-09 131. 132. 130. 131. 5771800 131.
## 6 2017-01-10 131. 132. 129. 130. 5985800 130.
## 7 2017-01-11 131. 132. 129. 130. 5615100 130.
## 8 2017-01-12 131. 131. 128. 129. 5388900 129.
## 9 2017-01-13 131. 134. 131. 134. 10515000 134.
## 10 2017-01-17 135. 135. 132. 133. 12220200 133.
## # … with 771 more rows
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics. Character data is words such as “volume” or “open”. Logical data is data such as true or false.
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
Netflix started out the year strong, gaining over 100 dollars per share. The stock then plateaud and dropped back down to 350 dollars per share before more gains at the end of the year.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
mult_stocks <- tq_get(c("NFLX", "AMZN"),
get = "stock.prices",
from = "2016-01-01",
to = "2017-01-01")
mult_stocks
## # A tibble: 504 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NFLX 2016-01-04 109 110 105. 110. 20794800 110.
## 2 NFLX 2016-01-05 110. 111. 106. 108. 17664600 108.
## 3 NFLX 2016-01-06 105. 118. 105. 118. 33045700 118.
## 4 NFLX 2016-01-07 116. 122. 112. 115. 33636700 115.
## 5 NFLX 2016-01-08 116. 118. 111. 111. 18067100 111.
## 6 NFLX 2016-01-11 112. 117. 111. 115. 21920400 115.
## 7 NFLX 2016-01-12 116. 118. 115. 117. 15133500 117.
## 8 NFLX 2016-01-13 114. 114. 105. 107. 24921600 107.
## 9 NFLX 2016-01-14 106. 109. 101. 107. 23664800 107.
## 10 NFLX 2016-01-15 102. 106. 102. 104. 19775100 104.
## # … with 494 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.