Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
## ── Attaching packages ───────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.3
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## ── Conflicts ──────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidyquant) # for financial analysis
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## ══ Need to Learn tidyquant? ══════════════════════════════════════
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
## Import data
stocks <- tq_get("WMT", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,033 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 60.5 61.5 60.4 61.5 11989200 55.7
## 2 2016-01-05 62.0 63.0 61.8 62.9 13326000 57.1
## 3 2016-01-06 62.5 64.0 62.5 63.5 16564600 57.6
## 4 2016-01-07 63.0 65.2 62.9 65.0 26430000 59.0
## 5 2016-01-08 65.1 65.4 63.4 63.5 17767900 57.6
## 6 2016-01-11 63.8 64.5 63.6 64.2 12653800 58.2
## 7 2016-01-12 64.4 64.7 63.4 63.6 12195900 57.7
## 8 2016-01-13 63.7 63.7 61.8 61.9 13725700 56.2
## 9 2016-01-14 62 63.6 61.8 63.1 12934900 57.2
## 10 2016-01-15 61.5 62.5 61.3 61.9 15174400 56.2
## # … with 1,023 more rows
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol for Walmart. You may find the ticker symbol for Microsoft from Yahoo Finance.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("WMT", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,033 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 60.5 61.5 60.4 61.5 11989200 55.7
## 2 2016-01-05 62.0 63.0 61.8 62.9 13326000 57.1
## 3 2016-01-06 62.5 64.0 62.5 63.5 16564600 57.6
## 4 2016-01-07 63.0 65.2 62.9 65.0 26430000 59.0
## 5 2016-01-08 65.1 65.4 63.4 63.5 17767900 57.6
## 6 2016-01-11 63.8 64.5 63.6 64.2 12653800 58.2
## 7 2016-01-12 64.4 64.7 63.4 63.6 12195900 57.7
## 8 2016-01-13 63.7 63.7 61.8 61.9 13725700 56.2
## 9 2016-01-14 62 63.6 61.8 63.1 12934900 57.2
## 10 2016-01-15 61.5 62.5 61.3 61.9 15174400 56.2
## # … with 1,023 more rows
7 columns
It went from 62 to 63
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
The data is numeric
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps adjusted to the y-axis, instead of close.
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use eval in the chunk option. Refer to the RMarkdown Reference Guide.