Use the given code below to answer the questions.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-13")
stocks
## # A tibble: 773 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-13 131. 134. 131. 134. 10515000 134.
## 2 2017-01-17 135. 135. 132. 133. 12220200 133.
## 3 2017-01-18 133. 134. 131. 133. 16168600 133.
## 4 2017-01-19 142. 143. 138. 138. 23203400 138.
## 5 2017-01-20 139. 141. 138. 139. 9497400 139.
## 6 2017-01-23 139. 139. 137. 137. 7433900 137.
## 7 2017-01-24 138. 141. 137. 140. 7754700 140.
## 8 2017-01-25 141. 141. 139. 140. 7238100 140.
## 9 2017-01-26 140. 141. 139. 139. 6038300 139.
## 10 2017-01-27 139. 142. 139 142. 8323900 142.
## # … with 763 more rows
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
An example of character data is my name, Yuxia Wu. An example of logical data is true or false entity.
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
At the start of 2019, Netflix had around 240 subscribers,and then gradually builds up to between 350 and 370 subscribers. Although it declined slightly at the end of 2019, the number of subscribers started to rise again in 2020.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
## Import data
mult_stocks <- tq_get("AMZN","NFLX", get = "stock.prices", from = "2017-01-013")
mult_stocks
## # A tibble: 781 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-03 758. 759. 748. 754. 3521100 754.
## 2 2017-01-04 758. 760. 754. 757. 2510500 757.
## 3 2017-01-05 762. 782. 760. 780. 5830100 780.
## 4 2017-01-06 782. 799. 778. 796. 5986200 796.
## 5 2017-01-09 798 802. 792. 797. 3446100 797.
## 6 2017-01-10 797. 798 790. 796. 2558400 796.
## 7 2017-01-11 794. 800. 790. 799. 2992800 799.
## 8 2017-01-12 800. 814. 800. 814. 4873900 814.
## 9 2017-01-13 814. 822. 811. 817. 3791900 817.
## 10 2017-01-17 816. 816 803. 810. 3670500 810.
## # … with 771 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.