Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,033 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 103. 105. 102 105. 67649400 98.2
## 2 2016-01-05 106. 106. 102. 103. 55791000 95.8
## 3 2016-01-06 101. 102. 99.9 101. 68457400 93.9
## 4 2016-01-07 98.7 100. 96.4 96.4 81094400 89.9
## 5 2016-01-08 98.6 99.1 96.8 97.0 70798000 90.4
## 6 2016-01-11 99.0 99.1 97.3 98.5 49739400 91.9
## 7 2016-01-12 101. 101. 98.8 100. 49154200 93.2
## 8 2016-01-13 100. 101. 97.3 97.4 62439600 90.8
## 9 2016-01-14 98.0 100. 95.7 99.5 63170100 92.8
## 10 2016-01-15 96.2 97.7 95.4 97.1 79833900 90.6
## # … with 1,023 more rows
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-01")
stocks
## # A tibble: 781 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-03 125. 128. 124. 127. 9437900 127.
## 2 2017-01-04 127. 130. 127. 129. 7843600 129.
## 3 2017-01-05 129. 133. 129. 132. 10185500 132.
## 4 2017-01-06 132. 134. 130. 131. 10657900 131.
## 5 2017-01-09 131. 132. 130. 131. 5771800 131.
## 6 2017-01-10 131. 132. 129. 130. 5985800 130.
## 7 2017-01-11 131. 132. 129. 130. 5615100 130.
## 8 2017-01-12 131. 131. 128. 129. 5388900 129.
## 9 2017-01-13 131. 134. 131. 134. 10515000 134.
## 10 2017-01-17 135. 135. 132. 133. 12220200 133.
## # … with 771 more rows
An example of logical data would be binary and an example would be true or false. Character data is when the data is a string of one or more characters. An example of character data would be “two” or “three”.
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
The Netflix stock had decreased in 2019 slightly to below 300, but started to rise again by the end of 2019.
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("NFLX", "AMZN", get = "stock.prices", from = "2017-01-01")
stocks
## # A tibble: 781 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-03 125. 128. 124. 127. 9437900 127.
## 2 2017-01-04 127. 130. 127. 129. 7843600 129.
## 3 2017-01-05 129. 133. 129. 132. 10185500 132.
## 4 2017-01-06 132. 134. 130. 131. 10657900 131.
## 5 2017-01-09 131. 132. 130. 131. 5771800 131.
## 6 2017-01-10 131. 132. 129. 130. 5985800 130.
## 7 2017-01-11 131. 132. 129. 130. 5615100 130.
## 8 2017-01-12 131. 131. 128. 129. 5388900 129.
## 9 2017-01-13 131. 134. 131. 134. 10515000 134.
## 10 2017-01-17 135. 135. 132. 133. 12220200 133.
## # … with 771 more rows
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.