The code below creates a function that produces a graph to show the convergence of the Bloch-Beilinson Conjecture to the value of pi/4. This conjecture involves the summation of the following:
= 1/1 - 1/3 + 1/5 - 1/7 + ā¦
library("ggplot2")
## Warning: package 'ggplot2' was built under R version 3.5.3
The following code creates the summation using the example number of iterations of 20, and produces the graph of the results:
vector <- c()
value <- 0
for (i in 1:10){
value <- value + 1/(4*i - 3)
vector <- c(vector, value)
value <- value - (1/(4*i - 1))
vector <- c(vector, value)
}
vector2 <- c(1:(20))
dataset <- data.frame(vector2, vector)
graph20 <- ggplot(data <- dataset, aes(x <- vector2, y <- vector)) + geom_point() + geom_line(col = "black") + geom_segment(aes(x = 0, y = pi/4, xend = 20, yend = pi/4), size = 1, col = "red") + labs(y = "Summed of n values", x = "nth value")
print(graph20)
The previous code can be embedded into a function, with the input ānā representing the number of iterations you want to represent:
BlochFunction <- function(n){
vector <- c()
value <- 0
for (i in 1:(n/2)){
value <- value + 1/(4*i - 3)
vector <- c(vector, value)
value <- value - (1/(4*i - 1))
vector <- c(vector, value)
}
vector2 <- c(1:(n))
dataset <- data.frame(vector2, vector)
a <- ggplot(data <- dataset, aes(x <- vector2, y <- vector)) + geom_point() + geom_line(col = "black") + geom_segment(aes(x = 0, y = pi/4, xend = n, yend = pi/4), size = 1, col = "red") + labs(y = "Summed of n values", x = "nth value")
a
}
The following example provides the plot for the first 100 values
BlochFunction(n = 100)