Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
stocks <- tq_get("NFLX", get = "stock.prices", from = "2016-01-01")
stocks
Character data would be text values likes “Hello World”. Logical data would be TRUE or FALSE.
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
Netflix stock had seen an increase in stock closing prices for a while til it had a drop at the tail end of the year. Since the major drop it has been steadily rising again.
mult_stocks <- tq_get(c("NFLX", "AMZN"),
get = "stock.prices",
from = "2016-01-01")
mult_stocks
## # A tibble: 2,064 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NFLX 2016-01-04 109 110 105. 110. 20794800 110.
## 2 NFLX 2016-01-05 110. 111. 106. 108. 17664600 108.
## 3 NFLX 2016-01-06 105. 118. 105. 118. 33045700 118.
## 4 NFLX 2016-01-07 116. 122. 112. 115. 33636700 115.
## 5 NFLX 2016-01-08 116. 118. 111. 111. 18067100 111.
## 6 NFLX 2016-01-11 112. 117. 111. 115. 21920400 115.
## 7 NFLX 2016-01-12 116. 118. 115. 117. 15133500 117.
## 8 NFLX 2016-01-13 114. 114. 105. 107. 24921600 107.
## 9 NFLX 2016-01-14 106. 109. 101. 107. 23664800 107.
## 10 NFLX 2016-01-15 102. 106. 102. 104. 19775100 104.
## # … with 2,054 more rows