Load Libraries, Set Your Working Directory, & Load Data

Load Libraries:

library(dplyr)         # for manipulating data
library(ggplot2)       # for making graphs
library(knitr)         # for nicer table formatting
library(summarytools)  # for frequency distribution tables

Set your working directory, where the folder “Datasets” is located:

setwd("C:/Users/chenk/OneDrive/Documents/Spring 2020/PMAP 4041/Computer Assignments")

Load Data

We are going to work with a new data set - a random sample of 1,000 federal personnel records for March 1994. These are not the responses to questionnaires as the previous data set was. Instead, they include the sort of information the government keeps in its personnel files: grade, salary, occupation, supervisory status, education, age, years of federal experience, sex, race, etc.

load("C:/Users/chenk/OneDrive/Documents/Spring 2020/PMAP 4041/Datasets/OPM94.RData")

See a full listing of the variables by using names(dataset_name) command:

names(opm94)
##  [1] "x"        "sal"      "grade"    "patco"    "major"    "age"     
##  [7] "male"     "vet"      "handvet"  "hand"     "yos"      "edyrs"   
## [13] "promo"    "exit"     "supmgr"   "race"     "minority" "grade4"  
## [19] "promo01"  "supmgr01" "male01"   "exit01"

Homework Problems

1. Calculating the mode, median, mean, range, variance, and standard deviation

1.1 First, lets work temporarily with American Indian females only (this step will subset the data set): race == "American Indian", male == "female"

opm94AIF <- opm94 %>% filter(race == "American Indian", male == "female")   # subset data
opm94AIF %>% pander::pander(split.table = Inf)                              # print the resulting dataset nicely formatted
x sal grade patco major age male vet handvet hand yos edyrs promo exit supmgr race minority grade4 promo01 supmgr01 male01 exit01
256 49401 13 Administrative 42 female no no no 14 13 no no yes American Indian 1 grades 13 to 16 0 1 0 0
257 25672 5 Technical 31 female no no no 6 13 no no no American Indian 1 grades 5 to 8 0 0 0 0
258 23316 5 Clerical 46 female no no no 16 12 no no no American Indian 1 grades 5 to 8 0 0 0 0
259 45697 12 Administrative 53 female no no yes 23 15 no no yes American Indian 1 grades 9 to 12 0 1 0 0
260 45383 9 Professional 57 female no no no 36 12 no no no American Indian 1 grades 9 to 12 0 0 0 0
261 24576 5 Technical 62 female no no no 38 10 no no no American Indian 1 grades 5 to 8 0 0 0 0
262 20166 5 Clerical 33 female no no no 6 13 no no no American Indian 1 grades 5 to 8 0 0 0 0
263 42751 11 Professional PUBAF 43 female no no no 16 18 no no no American Indian 1 grades 9 to 12 0 0 0 0
264 24585 6 Administrative 53 female no no no 18 15 yes no no American Indian 1 grades 5 to 8 1 0 0 0
265 20796 5 Technical 32 female no no no 10 13 no no no American Indian 1 grades 5 to 8 0 0 0 0

Let’s print out the individual values of the variables age, edyrs, grade, promo01, supmgr01 in the subset of the data, so that you could calculate statistics manually. We’ll also have the computer calculate the same statistics so that you could check your answers.

Individual values:

opm94AIF <- opm94AIF %>% select("age", "edyrs", "grade", "promo01", "supmgr01")
opm94AIF
##    age edyrs grade promo01 supmgr01
## 1   42    13    13       0        1
## 2   31    13     5       0        0
## 3   46    12     5       0        0
## 4   53    15    12       0        1
## 5   57    12     9       0        0
## 6   62    10     5       0        0
## 7   33    13     5       0        0
## 8   43    18    11       0        0
## 9   53    15     6       1        0
## 10  32    13     5       0        0

Descriptive statistics for the same variables (three different commands/packages to choose from):

Using summary() from base package:

opm94AIF %>% select("age", "edyrs", "grade", "promo01", "supmgr01") %>% summary()
##       age            edyrs           grade         promo01       supmgr01  
##  Min.   :31.00   Min.   :10.00   Min.   : 5.0   Min.   :0.0   Min.   :0.0  
##  1st Qu.:35.25   1st Qu.:12.25   1st Qu.: 5.0   1st Qu.:0.0   1st Qu.:0.0  
##  Median :44.50   Median :13.00   Median : 5.5   Median :0.0   Median :0.0  
##  Mean   :45.20   Mean   :13.40   Mean   : 7.6   Mean   :0.1   Mean   :0.2  
##  3rd Qu.:53.00   3rd Qu.:14.50   3rd Qu.:10.5   3rd Qu.:0.0   3rd Qu.:0.0  
##  Max.   :62.00   Max.   :18.00   Max.   :13.0   Max.   :1.0   Max.   :1.0

Using descr() from descr package:

descr::descr(opm94AIF)
## 
## age
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   31.00   35.25   44.50   45.20   53.00   62.00 
## 
## edyrs
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.00   12.25   13.00   13.40   14.50   18.00 
## 
## grade
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     5.0     5.0     5.5     7.6    10.5    13.0 
## 
## promo01
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     0.0     0.1     0.0     1.0 
## 
## supmgr01
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0     0.0     0.0     0.2     0.0     1.0

Using descr() from summarytools package:

summarytools::descr(opm94AIF)
## Descriptive Statistics  
## opm94AIF  
## N: 10  
## 
##                        age    edyrs    grade   promo01   supmgr01
## ----------------- -------- -------- -------- --------- ----------
##              Mean    45.20    13.40     7.60      0.10       0.20
##           Std.Dev    10.97     2.17     3.31      0.32       0.42
##               Min    31.00    10.00     5.00      0.00       0.00
##                Q1    33.00    12.00     5.00      0.00       0.00
##            Median    44.50    13.00     5.50      0.00       0.00
##                Q3    53.00    15.00    11.00      0.00       0.00
##               Max    62.00    18.00    13.00      1.00       1.00
##               MAD    14.83     1.48     0.74      0.00       0.00
##               IQR    17.75     2.25     5.50      0.00       0.00
##                CV     0.24     0.16     0.44      3.16       2.11
##          Skewness     0.02     0.59     0.53      2.28       1.28
##       SE.Skewness     0.69     0.69     0.69      0.69       0.69
##          Kurtosis    -1.62    -0.29    -1.66      3.57      -0.37
##           N.Valid    10.00    10.00    10.00     10.00      10.00
##         Pct.Valid   100.00   100.00   100.00    100.00     100.00


QUESTION 1.1: Which of the three outputs for descriptive statistics do you find the most useful? Explain

The thrid output is the most readable, and is efficient in terms of how many words it takes to call. The third output is easier to read compared to the other two as the variables are displayed in a vertical column format in addition to having one row for each descriptive statistic compared to the first output that repeats for each variable. The thrid output includes skewness which is not present in any other outputs.


1.2 Using the raw data above, let’s compute (as appropriate) the mode, median, mean, range, variance, and standard deviation for variable age (opm94AIF$age: 42 31 46 53 57 62 33 43 53 32 ) listed for American Indian females:

age <- opm94AIF$age  # save the values in a new variable with the name `age` for less typing
  • Mode age
table(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32))    # figure out the mode from the table or use which.max()
## 
## 31 32 33 42 43 46 53 57 62 
##  1  1  1  1  1  1  2  1  1
which.max(table(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32)))
## 53 
##  7
  • Median age
sort(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32)) # find the median from the ordered vector or use R function median()
##  [1] 31 32 33 42 43 46 53 53 57 62
median(opm94AIF$age)
## [1] 44.5
  • Mean age:
(42+31+46+53+57+62+33+43+53+32)/10        # or
## [1] 45.2
sum(opm94AIF$age)/length(opm94AIF$age)
## [1] 45.2
mean(opm94AIF$age)
## [1] 45.2
  • Range for age:
sort(c(42, 31, 46, 53, 57, 62, 33, 43, 53, 32))   # or
##  [1] 31 32 33 42 43 46 53 53 57 62
range(opm94AIF$age)
## [1] 31 62
  • Variance = SSD/(n-1)
age
##  [1] 42 31 46 53 57 62 33 43 53 32
age - mean(age)
##  [1]  -3.2 -14.2   0.8   7.8  11.8  16.8 -12.2  -2.2   7.8 -13.2
(age - mean(age))^2
##  [1]  10.24 201.64   0.64  60.84 139.24 282.24 148.84   4.84  60.84 174.24
sum((age - mean(age))^2)/(10-1) 
## [1] 120.4
var(age)
## [1] 120.4
  • SD = sqrt(var)
sqrt(sum((age - mean(age))^2)/(10-1) )
## [1] 10.97269
sd(age)
## [1] 10.97269

QUESTION 1.2: Do the manually calcualted results match the descriptive statistics in the tables above in section 1.1?

The listed descriptive statistics in the output do correspond with the manually calculated results such as mean, range, standard deviation. 


QUESTION 1.3: Similarly, compute (as appropriate) the mode, median, mean, range, variance, and standard deviation for variables edyrs and supmgr01 (opm94AIF$edyrs: 13 13 12 15 12 10 13 18 15 13, opm94AIF$supmgr01: 1 0 0 1 0 0 0 0 0 0 ) listed for American Indian females. Check your results against the output in 1.1.

#variables
edyrs <- opm94AIF$edyrs
supmgr01 <- opm94AIF$supmgr01

## edyrs DS##
#Mode
which.max(table(edyrs))
## 13 
##  3
#Mean
mean(edyrs)
## [1] 13.4
#Range
range(edyrs)
## [1] 10 18
#Variance
var(edyrs)
## [1] 4.711111
#SD
sd(edyrs)
## [1] 2.170509
## supmgr01 DS##
#Mode
which.max(table(supmgr01))
## 0 
## 1
#Mean
mean(supmgr01)
## [1] 0.2
#Range
range(supmgr01)
## [1] 0 1
#Variance
var(supmgr01)
## [1] 0.1777778
#SD
sd(supmgr01)
## [1] 0.421637


2. Calculating mode, median, mean for grouped data

Let’s generate grouped data (frequency table) that you will use for calculating statistics (mode, median, mean) for variable edyrs from the full dataset opm94:

summarytools::freq(opm94$edyrs)   # grouped data
## Frequencies  
## opm94$edyrs  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##          10     12      1.20           1.20      1.20           1.20
##          12    330     33.00          34.20     33.00          34.20
##          13    101     10.10          44.30     10.10          44.30
##          14     98      9.80          54.10      9.80          54.10
##          15     39      3.90          58.00      3.90          58.00
##          16    290     29.00          87.00     29.00          87.00
##          18    112     11.20          98.20     11.20          98.20
##          20     18      1.80         100.00      1.80         100.00
##        <NA>      0                               0.00         100.00
##       Total   1000    100.00         100.00    100.00         100.00
summary(opm94$edyrs)  # summary statistics by R
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   10.00   12.00   14.00   14.37   16.00   20.00


Finding mode, median, mean for edyrs using the grouped data:

  • Mode - the most frequent value, can be seen in the frequency table (=12)

  • Median - the value in the middle, can be seen in the frequency table from the % Valid Cum. column (=14)

  • Mean: SUM(Xi*fi)/n:

(10*12 + 12*330 + 13*101 + 14*98 + 15*39 + 16*290 + 18*112 + 20*18)/1000
## [1] 14.366

QUESTION 2.1: Similarlly to the example above, find the mode, median, mean for variables yos and supmgr01 using the grouped data:

#variables
yos <- opm94$yos
supmgr001 <- opm94$supmgr01

#summarytools (yos)
summarytools::freq(yos)
## Frequencies  
## yos  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##           1     16      1.60           1.60      1.60           1.60
##           2     21      2.10           3.70      2.10           3.70
##           3     45      4.50           8.20      4.50           8.20
##           4     30      3.00          11.20      3.00          11.20
##           5     53      5.30          16.50      5.30          16.50
##           6     49      4.90          21.40      4.90          21.40
##           7     58      5.80          27.20      5.80          27.20
##           8     31      3.10          30.30      3.10          30.30
##           9     43      4.30          34.60      4.30          34.60
##          10     45      4.50          39.10      4.50          39.10
##          11     33      3.30          42.40      3.30          42.40
##          12     35      3.50          45.90      3.50          45.90
##          13     31      3.10          49.00      3.10          49.00
##          14     34      3.40          52.40      3.40          52.40
##          15     43      4.30          56.70      4.30          56.70
##          16     36      3.60          60.30      3.60          60.30
##          17     31      3.10          63.40      3.10          63.40
##          18     29      2.90          66.30      2.90          66.30
##          19     28      2.80          69.10      2.80          69.10
##          20     34      3.40          72.50      3.40          72.50
##          21     30      3.00          75.50      3.00          75.50
##          22     26      2.60          78.10      2.60          78.10
##          23     29      2.90          81.00      2.90          81.00
##          24     26      2.60          83.60      2.60          83.60
##          25     17      1.70          85.30      1.70          85.30
##          26     23      2.30          87.60      2.30          87.60
##          27     18      1.80          89.40      1.80          89.40
##          28     26      2.60          92.00      2.60          92.00
##          29     25      2.50          94.50      2.50          94.50
##          30      6      0.60          95.10      0.60          95.10
##          31      8      0.80          95.90      0.80          95.90
##          32      9      0.90          96.80      0.90          96.80
##          33      6      0.60          97.40      0.60          97.40
##          34      8      0.80          98.20      0.80          98.20
##          35      6      0.60          98.80      0.60          98.80
##          36      4      0.40          99.20      0.40          99.20
##          37      1      0.10          99.30      0.10          99.30
##          38      4      0.40          99.70      0.40          99.70
##          39      2      0.20          99.90      0.20          99.90
##          41      1      0.10         100.00      0.10         100.00
##        <NA>      0                               0.00         100.00
##       Total   1000    100.00         100.00    100.00         100.00
summary(yos)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    7.00   14.00   14.81   21.00   41.00
#summarytools (supmgr001)
summarytools::freq(supmgr001)
## Frequencies  
## supmgr001  
## Type: Numeric  
## 
##               Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## ----------- ------ --------- -------------- --------- --------------
##           0    821     82.10          82.10     82.10          82.10
##           1    179     17.90         100.00     17.90         100.00
##        <NA>      0                               0.00         100.00
##       Total   1000    100.00         100.00    100.00         100.00
summary(supmgr001)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   0.000   0.179   0.000   1.000


3. Calculating mode, median, mean for grouped data (dummy variables)

QUESTION 3: Male01 and exit01 are dummy variables. (They only have two possible values, o and 1.) For each, compare its mean to the percentage of cases with the value 1. How are these two measures related?

Percentage of cases with the value 0 and 1 for male01:

table(opm94$male01) %>% prop.table()*100
## 
##    0    1 
## 48.8 51.2
table(opm94$exit01) %>% prop.table()*100
## 
##    0    1 
## 91.4  8.6

Mean value of male01:

mean(opm94$male01)
## [1] 0.512
mean(opm94$exit01)
## [1] 0.086
If I am understanding this correctly, the mean of male01 is .512 which is also the percentage of 1's within the variable in other words, since 0 does not have a value when calculating the mean 0 does not get accounted for and thus the mean of male01 is equal to the percentage of the the 1's within the set. 

(male01) 51.2% 1's = .512 mean of 1's 
(exit01) 08.6% 1's = .086 mean of 1's


4. calculating the mean for grouped data formulas for intervals

QUESTION 4: Using the Frequencies output for the entire data set (and the grouped data formulas for intervals), calculate the mean grade, using GRADE4 instead of grade.Calculate means using the midpoint of each interval of grade4

summarytools::freq(opm94$grade4)
## Frequencies  
## opm94$grade4  
## Type: Factor  
## 
##                         Freq   % Valid   % Valid Cum.   % Total   % Total Cum.
## --------------------- ------ --------- -------------- --------- --------------
##         grades 1 to 4     70      7.00           7.00      7.00           7.00
##       grades 13 to 16    223     22.30          29.30     22.30          29.30
##         grades 5 to 8    299     29.90          59.20     29.90          59.20
##        grades 9 to 12    408     40.80         100.00     40.80         100.00
##                  <NA>      0                               0.00         100.00
##                 Total   1000    100.00         100.00    100.00         100.00
summary(opm94$grade4)
##   grades 1 to 4 grades 13 to 16   grades 5 to 8  grades 9 to 12 
##              70             223             299             408

Mean:

#midpoint = (lower + upper) / 2
mid1<- (1+4)/2
mid2<- (5+8)/2
mid3<- (9+12)/2
mid4<- (13+16)/2

#Mean:  SUM(Xi*fi)/n:

((70 * mid1) + (223 * mid4) + (299 * mid3) + (408 * mid2)) / 1000
## [1] 9.2


5. Comparing means for different groups

Let’s calculate the means of a variety of variables for black and white workers so that you can describe differences between the two groups of workers:

opm94$race %>% table()
## .
## American Indian           Asian           Black        Hispanic           White 
##              17              31             175              49             728
opm94 %>% filter(race == "White") %>% select(sal) %>% summarise(mean_sal_White = mean(sal, na.rm = T))
##   mean_sal_White
## 1       43294.39
opm94 %>% filter(race == "Black") %>% select(sal) %>% summarise(mean_sal_black = mean(sal, na.rm = T))
##   mean_sal_black
## 1       32712.78
opm94 %>% filter(race == "White") %>% select(edyrs) %>% summarise(mean_edyrs_white = mean(edyrs, na.rm = T))
##   mean_edyrs_white
## 1         14.57692
opm94 %>% filter(race == "Black") %>% select(edyrs) %>% summarise(mean_edyrs_black = mean(edyrs, na.rm = T))
##   mean_edyrs_black
## 1             13.6

Or, alternatively, use the following commands:

opm94 %>% select(race, sal) %>% group_by(race) %>% summarise(mean_sal = mean(sal, na.rm = T))
## # A tibble: 5 x 2
##   race            mean_sal
##   <fct>              <dbl>
## 1 American Indian   32846.
## 2 Asian             38440.
## 3 Black             32713.
## 4 Hispanic          36500.
## 5 White             43294.
opm94 %>% select(race, edyrs) %>% group_by(race) %>% summarise(mean_edyrs = mean(edyrs, na.rm = T))
## # A tibble: 5 x 2
##   race            mean_edyrs
##   <fct>                <dbl>
## 1 American Indian       13.5
## 2 Asian                 14.7
## 3 Black                 13.6
## 4 Hispanic              14.1
## 5 White                 14.6
opm94 %>% select(race, grade) %>% group_by(race) %>% summarise(mean_grade = mean(grade, na.rm = T))
## # A tibble: 5 x 2
##   race            mean_grade
##   <fct>                <dbl>
## 1 American Indian       8.24
## 2 Asian                 9.65
## 3 Black                 7.91
## 4 Hispanic              8.94
## 5 White                10.1
opm94 %>% select(race, promo01) %>% group_by(race) %>%  summarise(mean_promo01 = mean(promo01, na.rm = T))
## # A tibble: 5 x 2
##   race            mean_promo01
##   <fct>                  <dbl>
## 1 American Indian        0.25 
## 2 Asian                  0.172
## 3 Black                  0.126
## 4 Hispanic               0.213
## 5 White                  0.123
opm94 %>% select(race, supmgr01) %>% group_by(race) %>%  summarise(mean_supmgr01 = mean(supmgr01, na.rm = T))
## # A tibble: 5 x 2
##   race            mean_supmgr01
##   <fct>                   <dbl>
## 1 American Indian         0.118
## 2 Asian                   0.161
## 3 Black                   0.109
## 4 Hispanic                0.143
## 5 White                   0.201

Question 5: Do whites receive higher rewards (e.g., salaries, grades, supervisory status, promotions) than minorities? Do differences in education and federal experience seem to be partly responsible for these patterns? Write a paragraph discussing differences between the groups (be specific about which groups you compare).

According to the study, whites on average have greater rewards than blacks: 

Rewards                (Whites)          (Blacks)        (Difference)
Salary                 ($43294.39)   >   ($32712.78)     (10581.78)
Education years        (14.58)       >   (13.60)         (.98)
Grades                 (10.08)       >   (7.91)          (2.17)
Supervisory Status     (.20)         >   (.11)           (.09)

Where they only advantage blacks have over whites is in promotion (.125) > (.122). 

From this data, it paints a certain picture of those surveryed that blacks on average have less educational years and recieve lower grades which could reflect the disparity in the lower salary recieved by blacks and the lower supervisiory status which is tied to salary as supervisory roles tend to have higher salary rates. 

On average, whites tend to higher salaries than other minorities even when Asians for instance have longer education years (14.68) than whites (14.58) but have worse grades (9.64) than whites (10.08). In addition, Asians recieve higher rates of promotions (.17) compared to whites (.12), which if promotions were correlated with higher salaries then why is the disparity between whites salaries (43294.39) and Asians salaries (38439.60), a difference of $4854.79, not smaller due to more promotions. 

Which comes into question, whether grades is the biggest factor in determining the salary levels of rewards as the higher one races grades have been the more salary one recieves from there supposed jobs. 


***

Knit the document into an html file and upload to RPubs or save as a pdf file and submit on iCollege.