Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-13")
stocks
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
Character data example:Names of things Logical data example:Dates and times
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-13")
stocks
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
Netflix stocks shot up in the beginning of 2019 then it leveled out to a degree.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
knitr::opts_chunk$set(echo = TRUE, message = FALSE, results = "markup")
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("NFLX", get = "stock.prices", from = "2017-01-13")
stocks
## # A tibble: 772 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-13 131. 134. 131. 134. 10515000 134.
## 2 2017-01-17 135. 135. 132. 133. 12220200 133.
## 3 2017-01-18 133. 134. 131. 133. 16168600 133.
## 4 2017-01-19 142. 143. 138. 138. 23203400 138.
## 5 2017-01-20 139. 141. 138. 139. 9497400 139.
## 6 2017-01-23 139. 139. 137. 137. 7433900 137.
## 7 2017-01-24 138. 141. 137. 140. 7754700 140.
## 8 2017-01-25 141. 141. 139. 140. 7238100 140.
## 9 2017-01-26 140. 141. 139. 139. 6038300 139.
## 10 2017-01-27 139. 142. 139 142. 8323900 142.
## # … with 762 more rows
## Import data
stocks.2 <- tq_get("AMZN", get = "stock.prices", from = "2017-01-13")
stocks.2
## # A tibble: 772 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-13 814. 822. 811. 817. 3791900 817.
## 2 2017-01-17 816. 816 803. 810. 3670500 810.
## 3 2017-01-18 810. 812. 804. 807. 2354200 807.
## 4 2017-01-19 810 814. 807. 809. 2540800 809.
## 5 2017-01-20 815. 816. 806. 808. 3376200 808.
## 6 2017-01-23 807. 818. 805. 818. 2797500 818.
## 7 2017-01-24 822 824. 814. 822. 2971700 822.
## 8 2017-01-25 826. 837. 825. 837. 3922600 837.
## 9 2017-01-26 836. 844. 833 839. 3586300 839.
## 10 2017-01-27 839 840. 829. 836. 2998700 836.
## # … with 762 more rows
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
## Visualize
stocks.2 %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.