Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
## ── Attaching packages ─────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.4
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## ── Conflicts ────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidyquant) # for financial analysis
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## ══ Need to Learn tidyquant? ════════════════════════════════════
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
stocks <- tq_get("NFLX", get = "stock.prices", from = "2016-01-01")
stocks
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
One example of character data in this case is the date. For example the last question asked for data from 1/13/17, “1/13/17” would be the character data. Logical data is when something is true or false, but that is not used in this example.
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
## Visualize
stocks %>%
ggplot(aes(x = date, y = adjusted)) +
geom_line()
Since the beginning of 2019, Netflix stock prices has changed a lot. They started the year around 250, then it went up to almost 400, dropped back down to 250, and finished the year around 325.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
stocks <- tq_get("NFLX", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,032 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 109 110 105. 110. 20794800 110.
## 2 2016-01-05 110. 111. 106. 108. 17664600 108.
## 3 2016-01-06 105. 118. 105. 118. 33045700 118.
## 4 2016-01-07 116. 122. 112. 115. 33636700 115.
## 5 2016-01-08 116. 118. 111. 111. 18067100 111.
## 6 2016-01-11 112. 117. 111. 115. 21920400 115.
## 7 2016-01-12 116. 118. 115. 117. 15133500 117.
## 8 2016-01-13 114. 114. 105. 107. 24921600 107.
## 9 2016-01-14 106. 109. 101. 107. 23664800 107.
## 10 2016-01-15 102. 106. 102. 104. 19775100 104.
## # … with 1,022 more rows
stocks <- tq_get("AMZN", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,032 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 656. 658. 628. 637. 9314500 637.
## 2 2016-01-05 647. 647. 628. 634. 5822600 634.
## 3 2016-01-06 622 640. 620. 633. 5329200 633.
## 4 2016-01-07 622. 630 605. 608. 7074900 608.
## 5 2016-01-08 620. 624. 606 607. 5512900 607.
## 6 2016-01-11 612. 620. 599. 618. 4891600 618.
## 7 2016-01-12 625. 626. 612. 618. 4724100 618.
## 8 2016-01-13 621. 621. 579. 582. 7655200 582.
## 9 2016-01-14 580. 602. 570. 593 7238000 593
## 10 2016-01-15 572. 585. 565. 570. 7784500 570.
## # … with 1,022 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.