Use the given code below to answer the questions.
## # A tibble: 1,032 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 103. 105. 102 105. 67649400 98.2
## 2 2016-01-05 106. 106. 102. 103. 55791000 95.8
## 3 2016-01-06 101. 102. 99.9 101. 68457400 93.9
## 4 2016-01-07 98.7 100. 96.4 96.4 81094400 89.9
## 5 2016-01-08 98.6 99.1 96.8 97.0 70798000 90.4
## 6 2016-01-11 99.0 99.1 97.3 98.5 49739400 91.9
## 7 2016-01-12 101. 101. 98.8 100. 49154200 93.2
## 8 2016-01-13 100. 101. 97.3 97.4 62439600 90.8
## 9 2016-01-14 98.0 100. 95.7 99.5 63170100 92.8
## 10 2016-01-15 96.2 97.7 95.4 97.1 79833900 90.6
## # … with 1,022 more rows
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol. Find ticker symbols from Yahoo Finance.
## # A tibble: 772 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2017-01-13 131. 134. 131. 134. 10515000 134.
## 2 2017-01-17 135. 135. 132. 133. 12220200 133.
## 3 2017-01-18 133. 134. 131. 133. 16168600 133.
## 4 2017-01-19 142. 143. 138. 138. 23203400 138.
## 5 2017-01-20 139. 141. 138. 139. 9497400 139.
## 6 2017-01-23 139. 139. 137. 137. 7433900 137.
## 7 2017-01-24 138. 141. 137. 140. 7754700 140.
## 8 2017-01-25 141. 141. 139. 140. 7238100 140.
## 9 2017-01-26 140. 141. 139. 139. 6038300 139.
## 10 2017-01-27 139. 142. 139 142. 8323900 142.
## # … with 762 more rows
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
logical example:
Character example:
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. Revise the code so that it maps close to the y-axis, instead of adjusted.
For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
since the beggining of 2019 the line chart has shown that netflix took a huge leap and went up to about 350 then plumeted near the middle end of the 2019 year to go back down to equal or less than the beggining of 2019.
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. You may refer to the manual of the tidyquant r package. Or, simply Google the tq_get function and see examples of the function’s usage.
## # A tibble: 2,064 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NFLX 2016-01-04 109 110 105. 110. 20794800 110.
## 2 NFLX 2016-01-05 110. 111. 106. 108. 17664600 108.
## 3 NFLX 2016-01-06 105. 118. 105. 118. 33045700 118.
## 4 NFLX 2016-01-07 116. 122. 112. 115. 33636700 115.
## 5 NFLX 2016-01-08 116. 118. 111. 111. 18067100 111.
## 6 NFLX 2016-01-11 112. 117. 111. 115. 21920400 115.
## 7 NFLX 2016-01-12 116. 118. 115. 117. 15133500 117.
## 8 NFLX 2016-01-13 114. 114. 105. 107. 24921600 107.
## 9 NFLX 2016-01-14 106. 109. 101. 107. 23664800 107.
## 10 NFLX 2016-01-15 102. 106. 102. 104. 19775100 104.
## # … with 2,054 more rows
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.
Hint: Use echo and results in the chunk option. Note that this question only applies to the individual code chunk of Q6.