ASSIGNMENT 2

1. Problem Set 1

  1. Show that \({ A }^{ T }A\neq A{ A }^{ T }\) in general (Proof and demonstration)
  2. For a special type of square matrix A, we get \({ A }^{ T }A=A{ A }^{ T }\). Under what conditions could this be true?

Both of these querstions can be answered at the same time. In multiplying matrices, position matters. If we make a modification to the matrix formula, it becomes clearer. If we replace \({ A }^{ T }\) with “B” we get \(\left[ A \right] \left[ B \right] \neq \left[ B \right] \left[ A \right]\). This statement is completely true.

However, stepping out side of the above example, multiplying a matrix (\(m\times n\)) by its transpose (\(n\times m\)) will always result in a square (\(m\times m\)) matrix where as multiplying a Transpose (\(n\times m\)) by its matrix (\(m\times n\)) will result in a (\(n\times n\))

\[(n\times n)\neq (m\times m)\] The dimensions to not match in all cases

\[A=\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}\quad then\quad { A }^{ T }=\quad \begin{vmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{vmatrix}\] \[\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}*\begin{vmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{vmatrix}=\quad \begin{bmatrix} 29 & 56 \\ 56 & 110 \end{bmatrix}\]

\[{ A }^{ T }=\quad \begin{vmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{vmatrix}\quad then\quad A=\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}\]

\[\begin{vmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{vmatrix}*\begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \end{bmatrix}=\begin{bmatrix} 29 & 36 & 43 \\ 36 & 45 & 54 \\ 43 & 54 & 65 \end{bmatrix}\]

If A is completely equal to \({ A }^{ T }\), such as a symmetric matrix, then \({ A }^{ T }A=A{ A }^{ T }\) as the multiplcation of the matrices will not differ in the position of the multiplication.

\[\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}=\begin{vmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{vmatrix}\]

Problem Set 2

Matrix factorization is a very important problem. There are supercomputers built just to do matrix factorizations. Every second you are on an airplane, matrices are being factorized. Radars that track ights use a technique called Kalman ltering. At the heart of Kalman Filtering is a Matrix Factorization operation. Kalman Filters are solving linear systems of equations when they track your light using radars.

Write an R function to factorize a square matrix A into LU or LDU, whichever you prefer.

LU_factor <- function(A) {
  
# Ensure Matrix is Square
  
if(dim(A)[1]!=dim(A)[2]){
  return('STOP! Matrix is not square')
    }
r <- c <- dim(A)[1]  
L <- D <- matrix(diag(r), ncol=c, nrow = r)
U <- A
  
for(w in 1: (c-1)){
  for (q in (w+1):r) {
     L[q,w]= (U[q,w]/U[w,w])
     U[q,]= U[q,]-(U[w,]*L[q,w])
    }
  }    
 
diag(D) = diag(U)
  for (g in 1:r){
    U[g,]=U[g,]/U[g,g]
  }

LU <- list("Lower Matrix"=L, "Upper Matrix"=U, "Diagonal Matrix"=D)

return(LU)
}
rank = 4
set.seed(5)
x <- rnorm(rank^2)
Q2 <- matrix(x, nrow=rank); Q2
##             [,1]       [,2]       [,3]       [,4]
## [1,] -0.84085548  1.7114409 -0.2857736 -1.0803926
## [2,]  1.38435934 -0.6029080  0.1381082 -0.1575344
## [3,] -1.25549186 -0.4721664  1.2276303 -1.0717600
## [4,]  0.07014277 -0.6353713 -0.8017795 -0.1389861
LU_factor(Q2)
## $`Lower Matrix`
##             [,1]       [,2]       [,3] [,4]
## [1,]  1.00000000  0.0000000  0.0000000    0
## [2,] -1.64637013  1.0000000  0.0000000    0
## [3,]  1.49311254 -1.3669852  1.0000000    0
## [4,] -0.08341834 -0.2224198 -0.7496452    1
## 
## $`Upper Matrix`
##      [,1]      [,2]       [,3]       [,4]
## [1,]    1 -2.035357  0.3398606  1.2848731
## [2,]    0  1.000000 -0.1500756 -0.8742541
## [3,]    0  0.000000  1.0000000 -1.7545976
## [4,]    0  0.000000  0.0000000  1.0000000
## 
## $`Diagonal Matrix`
##            [,1]     [,2]     [,3]      [,4]
## [1,] -0.8408555 0.000000 0.000000  0.000000
## [2,]  0.0000000 2.214757 0.000000  0.000000
## [3,]  0.0000000 0.000000 1.199963  0.000000
## [4,]  0.0000000 0.000000 0.000000 -2.238115

References:

https://www.youtube.com/watch?v=m3EojSAgIao https://www.youtube.com/watch?v=gA7m5lttIcU https://rpubs.com/betsyrosalen/DATA605_Assignment2 (I had difficulty with the Diagonal) https://www.khanacademy.org/math/linear-algebra/matrix-transformations/determinant-depth/v/linear-algebra-upper-triangular-determinant