Principles of Data Visualization and Introduction to ggplot2
I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:
inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(scales)
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:scales':
##
## alpha, rescale
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
And lets preview this data:
head(inc)
## Rank Name Growth_Rate Revenue
## 1 1 Fuhu 421.48 1.179e+08
## 2 2 FederalConference.com 248.31 4.960e+07
## 3 3 The HCI Group 245.45 2.550e+07
## 4 4 Bridger 233.08 1.900e+09
## 5 5 DataXu 213.37 8.700e+07
## 6 6 MileStone Community Builders 179.38 4.570e+07
## Industry Employees City State
## 1 Consumer Products & Services 104 El Segundo CA
## 2 Government Services 51 Dumfries VA
## 3 Health 132 Jacksonville FL
## 4 Energy 50 Addison TX
## 5 Advertising & Marketing 220 Boston MA
## 6 Real Estate 63 Austin TX
summary(inc)
## Rank Name Growth_Rate
## Min. : 1 (Add)ventures : 1 Min. : 0.340
## 1st Qu.:1252 @Properties : 1 1st Qu.: 0.770
## Median :2502 1-Stop Translation USA: 1 Median : 1.420
## Mean :2502 110 Consulting : 1 Mean : 4.612
## 3rd Qu.:3751 11thStreetCoffee.com : 1 3rd Qu.: 3.290
## Max. :5000 123 Exteriors : 1 Max. :421.480
## (Other) :4995
## Revenue Industry Employees
## Min. :2.000e+06 IT Services : 733 Min. : 1.0
## 1st Qu.:5.100e+06 Business Products & Services: 482 1st Qu.: 25.0
## Median :1.090e+07 Advertising & Marketing : 471 Median : 53.0
## Mean :4.822e+07 Health : 355 Mean : 232.7
## 3rd Qu.:2.860e+07 Software : 342 3rd Qu.: 132.0
## Max. :1.010e+10 Financial Services : 260 Max. :66803.0
## (Other) :2358 NA's :12
## City State
## New York : 160 CA : 701
## Chicago : 90 TX : 387
## Austin : 88 NY : 311
## Houston : 76 VA : 283
## San Francisco: 75 FL : 282
## Atlanta : 74 IL : 273
## (Other) :4438 (Other):2764
Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps
The summary above provides relevant information such as mean, median, and the range of the data. We can add the standard deviation for Growth Rate and Revenue
sd(inc$Growth_Rate)
## [1] 14.12369
sd(inc$Revenue)
## [1] 240542281
Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States
state <- inc$State %>% table() %>% as.data.frame(stringsAsFactors
=FALSE)
colnames(state) <- c('State', 'Industries')
ggplot(state, aes(x=reorder(State, Industries),y=Industries, color=State)) +
geom_bar(stat='identity', color = 'black', fill=rainbow(52)) +
coord_flip() +
xlab('States')+
theme_classic()
Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.
MyNY <- inc %>% filter(State == 'NY', complete.cases(.)) %>% arrange(Industry) %>% select(Industry, Employees)
MyNY <- MyNY %>% group_by(Industry) %>% filter(!(abs(Employees - median(Employees)) > 1.5*IQR(Employees)))# Assuming 1.5xIQR as the outlier limit which can reduced the number of negative error bars better than the 2xstd dev
MyNY
## # A tibble: 262 x 2
## # Groups: Industry [25]
## Industry Employees
## <fct> <int>
## 1 Advertising & Marketing 79
## 2 Advertising & Marketing 27
## 3 Advertising & Marketing 89
## 4 Advertising & Marketing 75
## 5 Advertising & Marketing 42
## 6 Advertising & Marketing 15
## 7 Advertising & Marketing 46
## 8 Advertising & Marketing 19
## 9 Advertising & Marketing 45
## 10 Advertising & Marketing 12
## # ... with 252 more rows
ind_Avg <- MyNY %>% group_by(Industry) %>% summarise(mean_emp = mean(Employees), emp_sd = sd(Employees))
ind_Avg$emp_sd[is.na(ind_Avg$emp_sd)] <- 0
ind_Avg
## # A tibble: 25 x 3
## Industry mean_emp emp_sd
## <fct> <dbl> <dbl>
## 1 Advertising & Marketing 38.2 24.2
## 2 Business Products & Services 102. 122.
## 3 Computer Hardware 44 0
## 4 Construction 29.4 22.4
## 5 Consumer Products & Services 36.5 28.1
## 6 Education 49.1 28.2
## 7 Energy 116. 23.8
## 8 Engineering 53.5 39.8
## 9 Environmental Services 155 134.
## 10 Financial Services 88 68.9
## # ... with 15 more rows
ggplot(ind_Avg, aes(x=reorder(Industry, mean_emp),y=mean_emp)) +
geom_bar(stat='identity', color = 'black', fill='pink') +
geom_errorbar(aes(ymin = mean_emp - emp_sd, ymax = mean_emp + emp_sd), width=0.2) +
theme(legend.position="none") +
ylab('Employees')+ xlab('Industry')+
coord_flip() +
theme_classic()
Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.
revenue <-inc[complete.cases(inc),] %>%
group_by(Industry) %>%
summarise(sumR=sum(Revenue),sumE=sum(Employees)) %>%
mutate(rev_per_emp = sumR/sumE)
ggplot(revenue, aes(x=reorder(Industry, -rev_per_emp),y=rev_per_emp)) +
geom_bar(fill = "pink", stat="identity") +
coord_flip() +
xlab("Industry") +
ylab("Revenue Per Employee") +
ggtitle("Revenue Per Employee") +
theme(panel.background = element_blank(), legend.position = "top")