1, Show that ATA???AAT in general. (Proof and demonstration.)
library(matrixcalc)
library(Matrix)
## Warning: package 'Matrix' was built under R version 3.5.3
A <- matrix(c(1,2,3,4),nrow=2, ncol=2)
A;
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
AT= t(A)
AT;
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
AAT <- A %% AT
ATA <- AT %% A
identical(AAT, ATA)
## [1] FALSE
AAT
## [,1] [,2]
## [1,] 0 1
## [2,] 2 0
ATA
## [,1] [,2]
## [1,] 0 2
## [2,] 1 0
Conclusion: Therefore, ATA doesnโt equal AAT.
2, For a special type of square matrix A, we get ATA=AAT. Under what conditions could this be true? (Hint: The Identity matrix I is an example of such a matrix).
A <- matrix(c(1,2,2,1),2,2)
A;
## [,1] [,2]
## [1,] 1 2
## [2,] 2 1
AT= t(A)
AT
## [,1] [,2]
## [1,] 1 2
## [2,] 2 1
AAT<-A %*% AT
ATA<-AT %*% A
identical(AAT, ATA)
## [1] TRUE
AAT
## [,1] [,2]
## [1,] 5 4
## [2,] 4 5
ATA
## [,1] [,2]
## [1,] 5 4
## [2,] 4 5
Conclusion: ATA=AAT.