my_banklogi=BankCC
View(my_banklogi)
str(my_banklogi)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame':   30000 obs. of  24 variables:
 $ Credit_Amount         : num  20000 220000 90000 50000 50000 50000 500000 200000 240000 20000 ...
 $ Gender                : num  2 2 2 2 1 1 1 2 2 1 ...
 $ Academic_Qualification: num  2 2 2 2 2 1 1 2 3 3 ...
 $ Marital               : num  1 2 2 1 1 2 2 2 1 2 ...
 $ Age_Years             : num  24 26 34 37 57 37 29 23 28 35 ...
 $ Repayment_Status_Jan  : num  2 0 0 0 0 0 0 0 0 0 ...
 $ Repayment_Status_Feb  : num  2 2 0 0 0 0 0 0 0 0 ...
 $ Repayment_Status_March: num  0 0 0 0 0 0 0 0 2 0 ...
 $ Repayment_Status_April: num  0 0 0 0 0 0 0 0 0 0 ...
 $ Repayment_Status_May  : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Repayment_Status_June : num  0 2 0 0 0 0 0 0 0 0 ...
 $ Jan_Bill_Amount       : num  3933 3683 39339 46990 8637 ...
 $ Feb_Bill_Amount       : num  3103 1735 14037 48333 5570 ...
 $ March_Bill_Amount     : num  689 2682 23559 49292 35835 ...
 $ April_Bill_Amount     : num  0 3272 24332 29324 20940 ...
 $ May_Bill_Amount       : num  0 3455 14848 28858 18146 ...
 $ June_Bill_Amount      : num  0 3261 15548 28547 18131 ...
 $ Previous_Payment_Jan  : num  0 0 1619 3000 3000 ...
 $ Previous_Payment_Feb  : num  679 2000 2500 2029 36672 ...
 $ Previous_Payment_March: num  0 1000 1000 1200 10000 657 59000 0 552 0 ...
 $ Previous_Payment_April: num  0 1000 1000 1100 9000 ...
 $ Previous_Payment_May  : num  0 0 1000 1069 689 ...
 $ Previous_Payment_June : num  0 2000 5000 1000 679 ...
 $ Default_Payment       : num  1 1 0 0 0 0 0 0 0 0 ...
summary(my_banklogi)
 Credit_Amount         Gender      Academic_Qualification    Marital        Age_Years     Repayment_Status_Jan Repayment_Status_Feb
 Min.   :  20000   Min.   :1.000   Min.   :1.000          Min.   :0.000   Min.   :21.00   Min.   :0.0000       Min.   :0.0000      
 1st Qu.:  50000   1st Qu.:1.000   1st Qu.:1.000          1st Qu.:1.000   1st Qu.:28.00   1st Qu.:0.0000       1st Qu.:0.0000      
 Median : 220000   Median :2.000   Median :2.000          Median :2.000   Median :34.00   Median :0.0000       Median :0.0000      
 Mean   : 192917   Mean   :1.604   Mean   :1.856          Mean   :1.552   Mean   :35.49   Mean   :0.3552       Mean   :0.3193      
 3rd Qu.: 270000   3rd Qu.:2.000   3rd Qu.:2.000          3rd Qu.:2.000   3rd Qu.:41.00   3rd Qu.:0.0000       3rd Qu.:0.0000      
 Max.   :2000000   Max.   :2.000   Max.   :6.000          Max.   :3.000   Max.   :79.00   Max.   :6.0000       Max.   :6.0000      
 Repayment_Status_March Repayment_Status_April Repayment_Status_May Repayment_Status_June Jan_Bill_Amount   Feb_Bill_Amount  March_Bill_Amount
 Min.   :0.000          Min.   :0.0000         Min.   :0.0000       Min.   :0.0000        Min.   :-365580   Min.   :-58777   Min.   :-257264  
 1st Qu.:0.000          1st Qu.:0.0000         1st Qu.:0.0000       1st Qu.:0.0000        1st Qu.:   3890   1st Qu.:  3517   1st Qu.:   2876  
 Median :0.000          Median :0.0000         Median :0.0000       Median :0.0000        Median :  35662   Median : 30538   Median :  26568  
 Mean   :0.303          Mean   :0.2567         Mean   :0.2195       Mean   :0.2249        Mean   :  81581   Mean   : 52517   Mean   :  59004  
 3rd Qu.:0.000          3rd Qu.:0.0000         3rd Qu.:0.0000       3rd Qu.:0.0000        3rd Qu.:  67091   3rd Qu.: 57421   3rd Qu.:  60253  
 Max.   :6.000          Max.   :6.0000         Max.   :6.0000       Max.   :6.0000        Max.   : 964533   Max.   :883831   Max.   :2664089  
 April_Bill_Amount May_Bill_Amount  June_Bill_Amount  Previous_Payment_Jan Previous_Payment_Feb Previous_Payment_March Previous_Payment_April
 Min.   :-270000   Min.   :-81334   Min.   :-338603   Min.   :     0       Min.   :      0      Min.   :     0         Min.   :     0        
 1st Qu.:   2672   1st Qu.:  1763   1st Qu.:   1256   1st Qu.:  1000       1st Qu.:    770      1st Qu.:   550         1st Qu.:   333        
 Median :  25629   Median : 18043   Median :  17071   Median :  3000       Median :   2542      Median :  1900         Median :  1500        
 Mean   :  55122   Mean   : 39940   Mean   :  38506   Mean   :  6286       Mean   :   7466      Mean   :  5836         Mean   :  5128        
 3rd Qu.:  54509   3rd Qu.: 50191   3rd Qu.:  48655   3rd Qu.:  6000       3rd Qu.:   5000      3rd Qu.:  5500         3rd Qu.:  4013        
 Max.   : 992596   Max.   :827171   Max.   : 861664   Max.   :973663       Max.   :2674259      Max.   :999055         Max.   :538897        
 Previous_Payment_May Previous_Payment_June Default_Payment 
 Min.   :     0       Min.   :     0.0      Min.   :0.0000  
 1st Qu.:   310       1st Qu.:   117.8      1st Qu.:0.0000  
 Median :  1539       Median :  1500.0      Median :0.0000  
 Mean   :  5261       Mean   :  5215.5      Mean   :0.2212  
 3rd Qu.:  5000       3rd Qu.:  4000.0      3rd Qu.:0.0000  
 Max.   :536539       Max.   :528666.0      Max.   :1.0000  
is.na(sum(my_banklogi))
[1] FALSE
set.seed(5)

We download the raw data and save it in a location that we remember. Preferrably in Desktop.Assign a name for the file to call in R. Understand the structure and the summary of the data using str() and summary() functions respectively.Use is.na function to see if there are any missing values in the given dataset.Then assign set.seed() value to have a constant sample size, everytime when this code is run.Here we have set it as 5.

library(caTools)
sample_traintest=sample.split(my_banklogi,SplitRatio = 0.8)
sample_traintest
 [1]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE
[23]  TRUE  TRUE
Train=subset(my_banklogi,sample_traintest=="TRUE")
Length of logical index must be 1 or 30000, not 24
Test=subset(my_banklogi,sample_traintest=="FALSE")
Length of logical index must be 1 or 30000, not 24

We split the data set into 80:20 as we will use 80% of the data set for the machine to train and the 20% of the data set for the machine to test. In this process, we need to install CaTools packages using install.packages(CaTools). Here, it was installed already, that step is skipped and we call the CaToos library.We assign the split ratio as 0.8 which is 80%. This is done using sample.split function. Once the sample is split, we need to assign the data for Training using subset function. Random value that has TRUE will be considered for the training data set. This is like randomly filtering 80% of the data set for the machine to Train. Any FALSE value will be used by the machine for Testing the outcome of the model.

# logistic model
my_logistics_bk=glm(Default_Payment~.,data = Train, family = 'binomial')
summary(my_logistics_bk)

Call:
glm(formula = Default_Payment ~ ., family = "binomial", data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5371  -0.6084  -0.5255  -0.3686   3.4041  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.026e+00  1.385e-01  -7.406 1.30e-13 ***
Credit_Amount          -1.533e-06  1.621e-07  -9.462  < 2e-16 ***
Gender                 -1.174e-01  3.550e-02  -3.306 0.000947 ***
Academic_Qualification -8.174e-02  2.386e-02  -3.426 0.000613 ***
Marital                -1.572e-01  3.675e-02  -4.277 1.89e-05 ***
Age_Years               4.253e-03  2.074e-03   2.051 0.040279 *  
Repayment_Status_Jan    8.882e-01  2.809e-02  31.617  < 2e-16 ***
Repayment_Status_Feb    4.013e-02  2.941e-02   1.365 0.172333    
Repayment_Status_March  1.483e-01  3.165e-02   4.686 2.78e-06 ***
Repayment_Status_April  4.610e-02  3.575e-02   1.289 0.197259    
Repayment_Status_May    1.020e-01  3.836e-02   2.660 0.007812 ** 
Repayment_Status_June   1.667e-01  3.246e-02   5.136 2.81e-07 ***
Jan_Bill_Amount        -7.595e-07  3.895e-07  -1.950 0.051155 .  
Feb_Bill_Amount         1.413e-06  5.804e-07   2.434 0.014926 *  
March_Bill_Amount       2.636e-07  8.325e-07   0.317 0.751546    
April_Bill_Amount      -3.926e-07  8.337e-07  -0.471 0.637666    
May_Bill_Amount         5.709e-08  1.519e-06   0.038 0.970019    
June_Bill_Amount        7.641e-07  1.367e-06   0.559 0.576325    
Previous_Payment_Jan   -7.829e-06  1.927e-06  -4.064 4.83e-05 ***
Previous_Payment_Feb   -4.729e-06  1.451e-06  -3.258 0.001122 ** 
Previous_Payment_March -2.194e-06  1.612e-06  -1.361 0.173506    
Previous_Payment_April -2.973e-06  1.680e-06  -1.769 0.076813 .  
Previous_Payment_May   -3.035e-06  1.797e-06  -1.689 0.091205 .  
Previous_Payment_June  -3.617e-06  1.523e-06  -2.375 0.017553 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21288  on 23726  degrees of freedom
AIC: 21336

Number of Fisher Scoring iterations: 5

Build the model using glm function. Include the dependant variable with the other variables using a dot as shown in the code. Get the summary of the model to know the P value and AIC value (AIC - Akaike Information Criteria). AIC value basically shows the quality of the model. Here AIC is 21336. We will now be able to see the varialbles that has P Value >0.05. We consider only those values to get a better model. Those variables that are to be considered will be denoted with “", "", "”, “.”. Variables that does not contain any symbols will have the point that is near to zero, hence those can be removed.

my_bklogi1=glm(Default_Payment~.-Repayment_Status_Feb,data = Train, family = 'binomial')
summary(my_bklogi1)

Call:
glm(formula = Default_Payment ~ . - Repayment_Status_Feb, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5342  -0.6091  -0.5252  -0.3675   3.4283  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.020e+00  1.384e-01  -7.372 1.68e-13 ***
Credit_Amount          -1.549e-06  1.617e-07  -9.580  < 2e-16 ***
Gender                 -1.184e-01  3.549e-02  -3.335 0.000853 ***
Academic_Qualification -8.158e-02  2.385e-02  -3.420 0.000627 ***
Marital                -1.578e-01  3.674e-02  -4.295 1.75e-05 ***
Age_Years               4.250e-03  2.073e-03   2.050 0.040359 *  
Repayment_Status_Jan    9.066e-01  2.462e-02  36.821  < 2e-16 ***
Repayment_Status_March  1.666e-01  2.860e-02   5.825 5.73e-09 ***
Repayment_Status_April  4.475e-02  3.573e-02   1.252 0.210421    
Repayment_Status_May    1.045e-01  3.831e-02   2.728 0.006365 ** 
Repayment_Status_June   1.680e-01  3.244e-02   5.179 2.23e-07 ***
Jan_Bill_Amount        -7.534e-07  3.896e-07  -1.934 0.053113 .  
Feb_Bill_Amount         1.424e-06  5.802e-07   2.454 0.014133 *  
March_Bill_Amount       2.756e-07  8.324e-07   0.331 0.740561    
April_Bill_Amount      -3.980e-07  8.332e-07  -0.478 0.632917    
May_Bill_Amount         4.167e-08  1.518e-06   0.027 0.978094    
June_Bill_Amount        7.778e-07  1.366e-06   0.569 0.569231    
Previous_Payment_Jan   -8.166e-06  1.937e-06  -4.215 2.50e-05 ***
Previous_Payment_Feb   -4.674e-06  1.447e-06  -3.230 0.001236 ** 
Previous_Payment_March -2.184e-06  1.612e-06  -1.355 0.175379    
Previous_Payment_April -2.944e-06  1.678e-06  -1.754 0.079382 .  
Previous_Payment_May   -3.015e-06  1.795e-06  -1.679 0.093058 .  
Previous_Payment_June  -3.583e-06  1.522e-06  -2.355 0.018545 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21290  on 23727  degrees of freedom
AIC: 21336

Number of Fisher Scoring iterations: 5
my_bklogi2=glm(Default_Payment~.-March_Bill_Amount,data = Train, family = 'binomial')
summary(my_bklogi2)

Call:
glm(formula = Default_Payment ~ . - March_Bill_Amount, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5371  -0.6085  -0.5255  -0.3688   3.4035  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.026e+00  1.385e-01  -7.407 1.29e-13 ***
Credit_Amount          -1.534e-06  1.620e-07  -9.467  < 2e-16 ***
Gender                 -1.174e-01  3.550e-02  -3.306 0.000948 ***
Academic_Qualification -8.163e-02  2.386e-02  -3.421 0.000623 ***
Marital                -1.571e-01  3.675e-02  -4.276 1.90e-05 ***
Age_Years               4.253e-03  2.074e-03   2.051 0.040263 *  
Repayment_Status_Jan    8.883e-01  2.809e-02  31.622  < 2e-16 ***
Repayment_Status_Feb    4.023e-02  2.940e-02   1.368 0.171253    
Repayment_Status_March  1.484e-01  3.165e-02   4.691 2.72e-06 ***
Repayment_Status_April  4.596e-02  3.575e-02   1.286 0.198567    
Repayment_Status_May    1.020e-01  3.836e-02   2.658 0.007867 ** 
Repayment_Status_June   1.667e-01  3.247e-02   5.135 2.83e-07 ***
Jan_Bill_Amount        -7.031e-07  3.455e-07  -2.035 0.041814 *  
Feb_Bill_Amount         1.445e-06  5.711e-07   2.530 0.011417 *  
April_Bill_Amount      -2.461e-07  6.943e-07  -0.355 0.722964    
May_Bill_Amount         7.273e-08  1.518e-06   0.048 0.961800    
June_Bill_Amount        7.673e-07  1.367e-06   0.561 0.574736    
Previous_Payment_Jan   -7.759e-06  1.912e-06  -4.057 4.96e-05 ***
Previous_Payment_Feb   -4.599e-06  1.391e-06  -3.306 0.000948 ***
Previous_Payment_March -2.361e-06  1.529e-06  -1.545 0.122425    
Previous_Payment_April -2.974e-06  1.682e-06  -1.768 0.076980 .  
Previous_Payment_May   -3.035e-06  1.796e-06  -1.690 0.091112 .  
Previous_Payment_June  -3.616e-06  1.522e-06  -2.376 0.017516 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21288  on 23727  degrees of freedom
AIC: 21334

Number of Fisher Scoring iterations: 5
my_bklogi3=glm(Default_Payment~.-April_Bill_Amount,data = Train, family = 'binomial')
summary(my_bklogi3)

Call:
glm(formula = Default_Payment ~ . - April_Bill_Amount, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5361  -0.6083  -0.5255  -0.3682   3.4061  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.026e+00  1.385e-01  -7.408 1.28e-13 ***
Credit_Amount          -1.534e-06  1.621e-07  -9.462  < 2e-16 ***
Gender                 -1.174e-01  3.550e-02  -3.308 0.000941 ***
Academic_Qualification -8.160e-02  2.386e-02  -3.420 0.000626 ***
Marital                -1.570e-01  3.675e-02  -4.274 1.92e-05 ***
Age_Years               4.261e-03  2.074e-03   2.055 0.039883 *  
Repayment_Status_Jan    8.882e-01  2.809e-02  31.618  < 2e-16 ***
Repayment_Status_Feb    4.020e-02  2.940e-02   1.367 0.171605    
Repayment_Status_March  1.482e-01  3.165e-02   4.682 2.84e-06 ***
Repayment_Status_April  4.581e-02  3.575e-02   1.281 0.200079    
Repayment_Status_May    1.021e-01  3.836e-02   2.661 0.007785 ** 
Repayment_Status_June   1.669e-01  3.246e-02   5.140 2.75e-07 ***
Jan_Bill_Amount        -7.829e-07  3.868e-07  -2.024 0.042952 *  
Feb_Bill_Amount         1.450e-06  5.744e-07   2.524 0.011599 *  
March_Bill_Amount       4.543e-08  6.948e-07   0.065 0.947861    
May_Bill_Amount        -1.385e-07  1.461e-06  -0.095 0.924483    
June_Bill_Amount        7.326e-07  1.365e-06   0.537 0.591600    
Previous_Payment_Jan   -7.835e-06  1.926e-06  -4.069 4.73e-05 ***
Previous_Payment_Feb   -4.681e-06  1.447e-06  -3.235 0.001214 ** 
Previous_Payment_March -2.454e-06  1.524e-06  -1.610 0.107383    
Previous_Payment_April -2.784e-06  1.631e-06  -1.707 0.087847 .  
Previous_Payment_May   -3.019e-06  1.795e-06  -1.682 0.092517 .  
Previous_Payment_June  -3.609e-06  1.522e-06  -2.371 0.017724 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21288  on 23727  degrees of freedom
AIC: 21334

Number of Fisher Scoring iterations: 5
my_bklogi4=glm(Default_Payment~.-May_Bill_Amount,data = Train, family = 'binomial')
summary(my_bklogi4)

Call:
glm(formula = Default_Payment ~ . - May_Bill_Amount, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5371  -0.6084  -0.5255  -0.3687   3.4056  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.026e+00  1.385e-01  -7.407 1.30e-13 ***
Credit_Amount          -1.533e-06  1.620e-07  -9.463  < 2e-16 ***
Gender                 -1.174e-01  3.550e-02  -3.306 0.000947 ***
Academic_Qualification -8.174e-02  2.386e-02  -3.426 0.000613 ***
Marital                -1.572e-01  3.675e-02  -4.277 1.89e-05 ***
Age_Years               4.253e-03  2.074e-03   2.051 0.040266 *  
Repayment_Status_Jan    8.882e-01  2.809e-02  31.623  < 2e-16 ***
Repayment_Status_Feb    4.012e-02  2.941e-02   1.365 0.172409    
Repayment_Status_March  1.483e-01  3.165e-02   4.687 2.77e-06 ***
Repayment_Status_April  4.609e-02  3.575e-02   1.289 0.197322    
Repayment_Status_May    1.021e-01  3.836e-02   2.661 0.007787 ** 
Repayment_Status_June   1.667e-01  3.246e-02   5.135 2.81e-07 ***
Jan_Bill_Amount        -7.615e-07  3.859e-07  -1.973 0.048455 *  
Feb_Bill_Amount         1.419e-06  5.591e-07   2.537 0.011169 *  
March_Bill_Amount       2.646e-07  8.321e-07   0.318 0.750495    
April_Bill_Amount      -3.840e-07  8.013e-07  -0.479 0.631781    
June_Bill_Amount        8.050e-07  8.262e-07   0.974 0.329857    
Previous_Payment_Jan   -7.831e-06  1.926e-06  -4.066 4.78e-05 ***
Previous_Payment_Feb   -4.726e-06  1.449e-06  -3.261 0.001111 ** 
Previous_Payment_March -2.191e-06  1.609e-06  -1.361 0.173456    
Previous_Payment_April -2.954e-06  1.600e-06  -1.846 0.064915 .  
Previous_Payment_May   -3.065e-06  1.608e-06  -1.905 0.056738 .  
Previous_Payment_June  -3.608e-06  1.506e-06  -2.395 0.016606 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21288  on 23727  degrees of freedom
AIC: 21334

Number of Fisher Scoring iterations: 5
my_bklogi5=glm(Default_Payment~.-June_Bill_Amount,data = Train, family = 'binomial')
summary(my_bklogi5)

Call:
glm(formula = Default_Payment ~ . - June_Bill_Amount, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5374  -0.6083  -0.5255  -0.3688   3.3795  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.026e+00  1.385e-01  -7.412 1.25e-13 ***
Credit_Amount          -1.532e-06  1.620e-07  -9.456  < 2e-16 ***
Gender                 -1.172e-01  3.550e-02  -3.301 0.000965 ***
Academic_Qualification -8.183e-02  2.385e-02  -3.431 0.000602 ***
Marital                -1.570e-01  3.675e-02  -4.273 1.93e-05 ***
Age_Years               4.255e-03  2.074e-03   2.052 0.040185 *  
Repayment_Status_Jan    8.881e-01  2.809e-02  31.615  < 2e-16 ***
Repayment_Status_Feb    4.026e-02  2.940e-02   1.369 0.170956    
Repayment_Status_March  1.482e-01  3.165e-02   4.681 2.85e-06 ***
Repayment_Status_April  4.643e-02  3.575e-02   1.299 0.194094    
Repayment_Status_May    1.021e-01  3.836e-02   2.663 0.007754 ** 
Repayment_Status_June   1.676e-01  3.243e-02   5.169 2.36e-07 ***
Jan_Bill_Amount        -7.609e-07  3.894e-07  -1.954 0.050709 .  
Feb_Bill_Amount         1.418e-06  5.801e-07   2.444 0.014526 *  
March_Bill_Amount       2.671e-07  8.328e-07   0.321 0.748373    
April_Bill_Amount      -3.695e-07  8.326e-07  -0.444 0.657171    
May_Bill_Amount         7.319e-07  9.173e-07   0.798 0.424899    
Previous_Payment_Jan   -7.878e-06  1.927e-06  -4.088 4.35e-05 ***
Previous_Payment_Feb   -4.779e-06  1.449e-06  -3.298 0.000974 ***
Previous_Payment_March -2.251e-06  1.610e-06  -1.398 0.162077    
Previous_Payment_April -3.061e-06  1.678e-06  -1.825 0.068013 .  
Previous_Payment_May   -2.501e-06  1.512e-06  -1.654 0.098175 .  
Previous_Payment_June  -3.768e-06  1.500e-06  -2.512 0.012018 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21288  on 23727  degrees of freedom
AIC: 21334

Number of Fisher Scoring iterations: 5
my_bklogi6=glm(Default_Payment~.-Previous_Payment_March,data = Train, family = 'binomial')
summary(my_bklogi6)

Call:
glm(formula = Default_Payment ~ . - Previous_Payment_March, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5396  -0.6081  -0.5253  -0.3710   3.4377  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.028e+00  1.384e-01  -7.425 1.13e-13 ***
Credit_Amount          -1.549e-06  1.618e-07  -9.573  < 2e-16 ***
Gender                 -1.168e-01  3.550e-02  -3.291 0.000998 ***
Academic_Qualification -8.201e-02  2.386e-02  -3.437 0.000588 ***
Marital                -1.577e-01  3.675e-02  -4.291 1.78e-05 ***
Age_Years               4.263e-03  2.074e-03   2.056 0.039824 *  
Repayment_Status_Jan    8.890e-01  2.809e-02  31.647  < 2e-16 ***
Repayment_Status_Feb    3.993e-02  2.941e-02   1.358 0.174547    
Repayment_Status_March  1.479e-01  3.165e-02   4.671 3.00e-06 ***
Repayment_Status_April  5.038e-02  3.562e-02   1.414 0.157279    
Repayment_Status_May    9.956e-02  3.832e-02   2.598 0.009370 ** 
Repayment_Status_June   1.673e-01  3.246e-02   5.154 2.55e-07 ***
Jan_Bill_Amount        -7.850e-07  3.886e-07  -2.020 0.043357 *  
Feb_Bill_Amount         1.423e-06  5.794e-07   2.456 0.014032 *  
March_Bill_Amount       6.618e-07  7.716e-07   0.858 0.391072    
April_Bill_Amount      -8.050e-07  7.695e-07  -1.046 0.295495    
May_Bill_Amount        -8.413e-08  1.511e-06  -0.056 0.955592    
June_Bill_Amount        8.934e-07  1.364e-06   0.655 0.512454    
Previous_Payment_Jan   -8.105e-06  1.933e-06  -4.193 2.75e-05 ***
Previous_Payment_Feb   -4.971e-06  1.449e-06  -3.431 0.000602 ***
Previous_Payment_April -3.119e-06  1.679e-06  -1.858 0.063165 .  
Previous_Payment_May   -3.276e-06  1.802e-06  -1.818 0.069062 .  
Previous_Payment_June  -3.716e-06  1.525e-06  -2.437 0.014827 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21290  on 23727  degrees of freedom
AIC: 21336

Number of Fisher Scoring iterations: 5
my_bklogi7=glm(Default_Payment~.-Previous_Payment_May,data = Train, family = 'binomial')
summary(my_bklogi7)

Call:
glm(formula = Default_Payment ~ . - Previous_Payment_May, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5379  -0.6080  -0.5251  -0.3704   3.3960  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.027e+00  1.384e-01  -7.417 1.20e-13 ***
Credit_Amount          -1.552e-06  1.618e-07  -9.591  < 2e-16 ***
Gender                 -1.169e-01  3.550e-02  -3.292 0.000995 ***
Academic_Qualification -8.185e-02  2.385e-02  -3.432 0.000599 ***
Marital                -1.580e-01  3.674e-02  -4.301 1.70e-05 ***
Age_Years               4.255e-03  2.074e-03   2.052 0.040156 *  
Repayment_Status_Jan    8.885e-01  2.809e-02  31.628  < 2e-16 ***
Repayment_Status_Feb    3.973e-02  2.941e-02   1.351 0.176642    
Repayment_Status_March  1.483e-01  3.165e-02   4.687 2.77e-06 ***
Repayment_Status_April  4.650e-02  3.576e-02   1.300 0.193526    
Repayment_Status_May    1.013e-01  3.837e-02   2.639 0.008315 ** 
Repayment_Status_June   1.704e-01  3.241e-02   5.257 1.46e-07 ***
Jan_Bill_Amount        -7.730e-07  3.892e-07  -1.986 0.047026 *  
Feb_Bill_Amount         1.389e-06  5.799e-07   2.396 0.016578 *  
March_Bill_Amount       2.665e-07  8.337e-07   0.320 0.749257    
April_Bill_Amount      -3.685e-07  8.337e-07  -0.442 0.658504    
May_Bill_Amount         1.272e-06  1.304e-06   0.975 0.329710    
June_Bill_Amount       -5.476e-07  1.088e-06  -0.503 0.614736    
Previous_Payment_Jan   -8.046e-06  1.935e-06  -4.159 3.20e-05 ***
Previous_Payment_Feb   -4.911e-06  1.454e-06  -3.377 0.000732 ***
Previous_Payment_March -2.450e-06  1.616e-06  -1.516 0.129643    
Previous_Payment_April -3.338e-06  1.687e-06  -1.978 0.047922 *  
Previous_Payment_June  -4.020e-06  1.513e-06  -2.656 0.007902 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21291  on 23727  degrees of freedom
AIC: 21337

Number of Fisher Scoring iterations: 5
my_bklogi8=glm(Default_Payment~.-Previous_Payment_June,data = Train, family = 'binomial')
summary(my_bklogi8)

Call:
glm(formula = Default_Payment ~ . - Previous_Payment_June, family = "binomial", 
    data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5363  -0.6081  -0.5246  -0.3746   3.2155  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.026e+00  1.385e-01  -7.409 1.28e-13 ***
Credit_Amount          -1.571e-06  1.614e-07  -9.735  < 2e-16 ***
Gender                 -1.172e-01  3.550e-02  -3.303 0.000957 ***
Academic_Qualification -8.172e-02  2.385e-02  -3.426 0.000613 ***
Marital                -1.578e-01  3.675e-02  -4.293 1.76e-05 ***
Age_Years               4.302e-03  2.074e-03   2.075 0.038019 *  
Repayment_Status_Jan    8.886e-01  2.810e-02  31.626  < 2e-16 ***
Repayment_Status_Feb    3.891e-02  2.941e-02   1.323 0.185780    
Repayment_Status_March  1.490e-01  3.165e-02   4.708 2.50e-06 ***
Repayment_Status_April  4.585e-02  3.576e-02   1.282 0.199786    
Repayment_Status_May    1.022e-01  3.836e-02   2.664 0.007713 ** 
Repayment_Status_June   1.664e-01  3.246e-02   5.125 2.97e-07 ***
Jan_Bill_Amount        -7.891e-07  3.894e-07  -2.027 0.042701 *  
Feb_Bill_Amount         1.357e-06  5.810e-07   2.336 0.019492 *  
March_Bill_Amount       2.687e-07  8.335e-07   0.322 0.747117    
April_Bill_Amount      -3.746e-07  8.350e-07  -0.449 0.653760    
May_Bill_Amount        -5.216e-07  1.506e-06  -0.346 0.729099    
June_Bill_Amount        1.402e-06  1.345e-06   1.042 0.297483    
Previous_Payment_Jan   -8.087e-06  1.937e-06  -4.174 2.99e-05 ***
Previous_Payment_Feb   -4.905e-06  1.459e-06  -3.362 0.000773 ***
Previous_Payment_March -2.389e-06  1.627e-06  -1.468 0.142155    
Previous_Payment_April -3.117e-06  1.685e-06  -1.849 0.064444 .  
Previous_Payment_May   -3.729e-06  1.801e-06  -2.070 0.038409 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21294  on 23727  degrees of freedom
AIC: 21340

Number of Fisher Scoring iterations: 5

The above codes show how we removed certain variables that need not be considered as it affects the AIC value to build the best model.

# Final model after checking AIC value
my_bklogi_best=glm(Default_Payment~.-Repayment_Status_Feb-March_Bill_Amount-April_Bill_Amount-May_Bill_Amount-June_Bill_Amount-Previous_Payment_March-Previous_Payment_May-Previous_Payment_June,data = Train, family = 'binomial')
summary(my_bklogi_best)

Call:
glm(formula = Default_Payment ~ . - Repayment_Status_Feb - March_Bill_Amount - 
    April_Bill_Amount - May_Bill_Amount - June_Bill_Amount - 
    Previous_Payment_March - Previous_Payment_May - Previous_Payment_June, 
    family = "binomial", data = Train)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.5376  -0.6081  -0.5234  -0.3838   3.2612  

Coefficients:
                         Estimate Std. Error z value Pr(>|z|)    
(Intercept)            -1.028e+00  1.383e-01  -7.434 1.05e-13 ***
Credit_Amount          -1.639e-06  1.592e-07 -10.299  < 2e-16 ***
Gender                 -1.163e-01  3.547e-02  -3.280 0.001038 ** 
Academic_Qualification -8.198e-02  2.382e-02  -3.442 0.000578 ***
Marital                -1.602e-01  3.672e-02  -4.362 1.29e-05 ***
Age_Years               4.343e-03  2.073e-03   2.095 0.036173 *  
Repayment_Status_Jan    9.087e-01  2.461e-02  36.918  < 2e-16 ***
Repayment_Status_March  1.662e-01  2.860e-02   5.810 6.25e-09 ***
Repayment_Status_April  5.149e-02  3.560e-02   1.446 0.148041    
Repayment_Status_May    1.003e-01  3.822e-02   2.624 0.008679 ** 
Repayment_Status_June   1.749e-01  3.231e-02   5.414 6.16e-08 ***
Jan_Bill_Amount        -7.485e-07  2.898e-07  -2.583 0.009798 ** 
Feb_Bill_Amount         1.667e-06  4.514e-07   3.693 0.000222 ***
Previous_Payment_Jan   -9.159e-06  1.950e-06  -4.698 2.62e-06 ***
Previous_Payment_Feb   -5.073e-06  1.384e-06  -3.666 0.000247 ***
Previous_Payment_April -3.287e-06  1.567e-06  -2.098 0.035889 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 25294  on 23749  degrees of freedom
Residual deviance: 21305  on 23734  degrees of freedom
AIC: 21337

Number of Fisher Scoring iterations: 5
my_prediction=predict(my_bklogi_best,Test)
my_prediction
          1           2           3           4           5           6           7           8           9          10          11 
-1.78146929 -1.64142171 -1.68154351 -1.08710816 -2.05062694 -0.63114920 -1.72129910 -1.68814126 -1.83175293 -1.53460706 -0.08350159 
         12          13          14          15          16          17          18          19          20          21          22 
-2.08130773 -0.93377478 -0.09066152 -0.98297415 -2.40306702 -2.72453743  0.59916192 -1.97812107 -1.93205311 -1.67753942  0.74745311 
         23          24          25          26          27          28          29          30          31          32          33 
-1.89472923 -0.85198925 -1.82422222 -0.74608032 -1.34933205 -1.82322969 -1.52604788 -0.82704478 -2.07654869 -1.07321285  0.56409687 
         34          35          36          37          38          39          40          41          42          43          44 
-1.61265175 -1.49522877 -1.96111447 -1.56162191 -0.65401554  0.91589951 -0.98187293 -1.43872234 -1.79709305 -1.87956172 -0.79337098 
         45          46          47          48          49          50          51          52          53          54          55 
-1.54263170 -1.73101095 -0.46466152  0.29601719 -1.60045969 -2.16672875 -1.70962137 -1.79012823 -1.95406724  0.39886910 -2.78525841 
         56          57          58          59          60          61          62          63          64          65          66 
-1.31047153 -0.92838289 -2.05685090 -1.88964078 -2.14932879 -1.87317780 -1.83900921 -2.05753764 -1.09938056  1.92637248 -1.73772852 
         67          68          69          70          71          72          73          74          75          76          77 
-0.61595208  1.20781950 -1.62968796 -0.78190218 -1.53117029 -2.13485338 -1.66414500 -1.72399607 -2.15115984  2.43149528 -0.79562303 
         78          79          80          81          82          83          84          85          86          87          88 
-2.09234875 -1.62594194 -1.99200496 -1.45026958 -1.96314747 -1.90261727 -1.30613339  0.73802943  0.24968420 -2.00919182 -1.60172428 
         89          90          91          92          93          94          95          96          97          98          99 
-1.97403326 -1.67181918 -2.08868864 -1.65265536 -1.92134159 -0.16824376 -1.74718420 -1.97777561 -1.29277032  0.08607521 -1.71441015 
        100         101         102         103         104         105         106         107         108         109         110 
-1.44554269 -1.40940217 -1.80698987 -1.27679243 -0.98326093 -0.93326629 -3.77720128 -2.56094560 -1.84705422 -1.94400175 -1.89661952 
        111         112         113         114         115         116         117         118         119         120         121 
-1.65757955 -2.17764474 -2.21310151 -2.06235674 -1.99223821 -1.71867061 -1.98358915 -1.80011059 -1.72533745 -2.07984792 -1.57443882 
        122         123         124         125         126         127         128         129         130         131         132 
-1.52981262 -1.47969803 -1.64782108 -1.92843037 -1.62295086 -2.37668966 -1.90893623 -1.73103393 -1.84775331 -1.31087424 -1.61754732 
        133         134         135         136         137         138         139         140         141         142         143 
-2.10578694 -2.25588690 -1.19916759 -1.86119879 -2.23329350 -1.96802543 -1.47878306  0.06690143 -1.85480466 -2.08117810 -1.61083392 
        144         145         146         147         148         149         150         151         152         153         154 
-1.62263832 -0.07418010 -2.28342002  0.41159089 -0.83259190 -1.45906527 -2.05042782 -1.14867781 -2.84240217 -2.81214783  0.10122103 
        155         156         157         158         159         160         161         162         163         164         165 
-2.05007564 -1.55437189 -1.60665669 -2.03421488 -1.89042873 -1.76937143 -2.41503519 -1.94201982 -1.73428876 -1.78062024 -1.66100673 
        166         167         168         169         170         171         172         173         174         175         176 
-1.43776699 -2.15003885 -1.98257293 -2.54903159 -1.04682536 -1.86363261 -1.55139071 -2.20236345 -1.68713194  1.02867931 -1.51929685 
        177         178         179         180         181         182         183         184         185         186         187 
 2.78652731  0.99175087 -1.67853378 -1.51549414 -2.13869229 -2.46756727 -0.82371948 -1.53682159 -1.58367109 -1.93549940  0.19541476 
        188         189         190         191         192         193         194         195         196         197         198 
-1.13130650 -2.01995799 -1.55164113 -1.54265265 -1.04346343 -1.61699121 -2.09922525 -0.23749262 -0.58726329 -1.78249219 -1.97204425 
        199         200         201         202         203         204         205         206         207         208         209 
-1.59384682 -2.29708691 -1.83458912 -1.52727368 -1.89291741 -1.74835342 -1.67840681 -2.18101438 -1.75621361 -1.79377255 -1.07150774 
        210         211         212         213         214         215         216         217         218         219         220 
-2.19818155 -1.73855192 -2.04393425 -1.48408366 -3.07592953 -1.16327940 -0.93549077 -1.55384134 -1.49462335 -2.34126575 -1.39900415 
        221         222         223         224         225         226         227         228         229         230         231 
-1.57831474  0.33012019 -2.89103674 -1.81408583 -2.09181785  1.18156150 -1.56564283 -0.73776444 -1.54598630 -1.22351190 -1.65823850 
        232         233         234         235         236         237         238         239         240         241         242 
-1.64807868  0.74215447 -1.75585959 -1.98290117 -1.64297022 -1.71676347  0.28918059 -1.18255029 -1.08206107 -0.16244092 -1.49586531 
        243         244         245         246         247         248         249         250         251         252         253 
-1.71184110 -1.45901415 -2.06624004 -1.53907645 -2.22933252 -2.14765695 -1.76827398 -1.51896627 -1.80675807 -1.74834187 -1.99736915 
        254         255         256         257         258         259         260         261         262         263         264 
-1.76209713 -1.79482793 -1.89245868 -0.27552476  0.16341498  0.24620812 -1.60544673 -1.78312605 -1.81780538 -2.01221408 -0.37604615 
        265         266         267         268         269         270         271         272         273         274         275 
-1.51197191 -1.85176520 -1.88419314 -2.14007499 -1.50205520 -0.90431124 -1.69287356 -1.58662804 -2.22689185 -1.37028844 -2.17907570 
        276         277         278         279         280         281         282         283         284         285         286 
-2.11204773 -1.83212489 -2.20029671 -0.60968395 -2.34285812 -1.85392669 -1.80912784 -1.98652305 -1.10893954 -0.60312554 -2.09093402 
        287         288         289         290         291         292         293         294         295         296         297 
-1.45891458 -2.40528100 -0.24897563 -2.35010172 -2.15577613 -1.82755452 -2.12724284 -2.12396236 -1.36567661 -1.55345127 -1.67892404 
        298         299         300         301         302         303         304         305         306         307         308 
-1.47080631  1.06585511 -1.64294783 -1.69082749 -1.62966883 -0.81998458 -1.60844819  1.78954571 -1.04760163 -3.13734531 -1.61841675 
        309         310         311         312         313         314         315         316         317         318         319 
-2.02687509 -1.66625413 -2.18658458  0.11875765 -1.80961994 -1.27465468 -2.26294856 -1.68085784 -0.19053934 -1.99383868 -2.30862350 
        320         321         322         323         324         325         326         327         328         329         330 
-0.21896989 -2.04101605 -1.27850338 -0.74369855 -2.20733297 -1.46641883 -1.95846024 -0.53860472 -1.64077766 -1.85497929 -2.00542276 
        331         332         333         334         335         336         337         338         339         340         341 
-2.05545160 -1.80500103 -0.86908203 -2.00959036 -2.09940136 -1.60691418 -0.76070807  1.12685909 -1.46319841  0.87487918 -1.90979133 
        342         343         344         345         346         347         348         349         350         351         352 
-1.58150752 -1.31060943 -1.93709183 -1.31518781 -2.10762231 -1.82285432 -1.87285789 -1.51417403 -1.99738293 -1.51968188 -1.26902772 
        353         354         355         356         357         358         359         360         361         362         363 
-1.93668478 -2.02562709 -1.53522380  0.87474062  0.20546463 -0.95394738 -2.04074705 -2.47927839 -1.79129412  0.07918254 -1.64757709 
        364         365         366         367         368         369         370         371         372         373         374 
-2.04656977 -2.03263482 -1.61607516 -1.05888348 -1.51209273 -1.52193624 -2.07836314 -1.60936748 -1.67013611 -2.21885541 -0.82331586 
        375         376         377         378         379         380         381         382         383         384         385 
-1.85002354 -2.02810961 -2.06570446 -1.88459615 -1.96202451 -1.51758132 -1.82193567 -2.13369258 -1.83217517 -1.74548762 -1.70378352 
        386         387         388         389         390         391         392         393         394         395         396 
-0.75279950 -2.42394375 -1.82775099 -1.36490985  0.58596610 -1.72251205 -1.63046816 -1.17916220 -0.75410670 -0.76870542 -2.10919967 
        397         398         399         400         401         402         403         404         405         406         407 
-2.41617610 -2.59110938 -1.95781895 -2.01356185 -1.54491403 -1.58461536 -2.06781065 -1.53399203 -2.05679541 -2.25945765 -1.83104250 
        408         409         410         411         412         413         414         415         416         417         418 
-2.52606009 -1.66188033 -0.83868190 -1.73215668 -1.92907141  0.15527598 -0.35189303  0.77962437 -1.20356693 -1.58081072 -1.02433304 
        419         420         421         422         423         424         425         426         427         428         429 
-1.40690203  0.71535014 -1.63201962 -2.02364985 -0.87584614 -1.77656032 -1.98307469 -0.97849521 -1.90953198 -1.18806508 -2.15375950 
        430         431         432         433         434         435         436         437         438         439         440 
-1.92539801 -0.95581788 -1.67728783 -1.87168539 -1.77548154 -1.99816704 -1.07714381 -0.34903470 -0.50677134 -0.81006581  0.07437951 
        441         442         443         444         445         446         447         448         449         450         451 
 1.27757156 -1.91489699 -2.88510037 -1.53587701 -0.48045061 -1.06803717  1.94262093 -2.32314251  0.88969888 -2.05204499 -1.94715934 
        452         453         454         455         456         457         458         459         460         461         462 
-0.85115964 -2.55720838 -2.09559758 -1.93814990 -1.66400169 -2.04825319 -1.67792305 -1.03987151 -1.41828814 -1.23513168 -2.02874661 
        463         464         465         466         467         468         469         470         471         472         473 
-0.72614107 -1.63214354 -1.72186743 -0.22181497 -2.60569307 -3.62143082  0.96105279 -1.95426621 -2.01501701 -2.08346642 -0.79428720 
        474         475         476         477         478         479         480         481         482         483         484 
-1.99924636 -1.96556147 -1.74247245 -0.70357443 -2.04514749 -1.78415260  0.06704054 -1.33850720  0.47069694 -0.61761519 -1.65075718 
        485         486         487         488         489         490         491         492         493         494         495 
 5.24175708 -1.92914504 -1.77527300 -1.81228071 -2.15584933 -0.26876543 -1.73722405 -1.44949924 -1.73848040 -1.69430375 -1.57136557 
        496         497         498         499         500         501         502         503         504         505         506 
-0.98724421 -1.70771274 -1.33318871 -1.92362974 -1.02982069  0.11866459 -1.96213161  0.34890121 -1.94720236 -1.29764113 -0.49287860 
        507         508         509         510         511         512         513         514         515         516         517 
 0.76568377 -1.02583692 -0.60292204 -1.21042726 -1.53921220 -1.94345199  2.06311669 -1.70150585 -1.89203651 -1.90960718 -0.66484236 
        518         519         520         521         522         523         524         525         526         527         528 
-1.02966243 -1.91158458 -1.94055174 -1.46706950 -2.18571575 -0.83711798 -1.94253092 -1.52514873 -1.63997007 -1.69304289 -1.78151847 
        529         530         531         532         533         534         535         536         537         538         539 
-1.23693588 -1.78626189 -3.26432623 -1.59079946 -1.70451463 -1.51042369 -0.68700084 -2.24460989 -1.57667615 -1.93150220 -1.01102767 
        540         541         542         543         544         545         546         547         548         549         550 
-2.07111117 -1.46923072 -1.13871738 -2.28352583 -1.53991494 -2.16858863 -1.80396591 -2.07301394 -0.15464454 -0.62016484 -0.51433170 
        551         552         553         554         555         556         557         558         559         560         561 
-1.10159564 -1.69888565 -1.00390925  0.69563336 -1.75725528 -1.89925685 -1.28481042 -1.92557154 -2.14838284  0.84834460 -1.34376712 
        562         563         564         565         566         567         568         569         570         571         572 
-1.73597312 -2.38997270 -1.74755685 -1.84517403  1.27397418 -1.91573500 -2.00033536 -1.86772619 -1.96218144 -2.08040459 -1.54803727 
        573         574         575         576         577         578         579         580         581         582         583 
-1.60455341 -2.13247497  5.77940408 -1.90200333 -1.99374508 -2.18496862 -2.16528228 -1.90351682 -1.46986687 -1.92127501  0.04590237 
        584         585         586         587         588         589         590         591         592         593         594 
-1.51176158 -1.82425372 -1.24555336 -1.57629246 -1.52572224 -2.08566927 -1.43643611 -1.95971814 -1.99941749 -0.68935296  0.69524215 
        595         596         597         598         599         600         601         602         603         604         605 
 1.19924767 -2.19648970  1.32333770 -2.39802856 -1.13380549 -0.48984729 -2.19198301 -1.49819491 -2.03003104 -1.67475301 -1.43327571 
        606         607         608         609         610         611         612         613         614         615         616 
-2.33641471 -1.68799695 -1.81379547 -1.61269684 -1.74511729 -1.75392730 -1.88790895 -1.83097492  0.68566274 -2.15261775 -1.63198519 
        617         618         619         620         621         622         623         624         625         626         627 
-1.43177493 -2.01875326 -1.64668584 -1.32350697 -1.89427353 -2.03695410  0.09570627 -1.58007692 -0.07992370  2.66594008 -1.57863824 
        628         629         630         631         632         633         634         635         636         637         638 
-1.57733114 -0.15212487  0.72191084 -1.75867419 -1.94881132 -1.58154126  1.01747725 -2.76650814 -2.22125820 -2.48832535 -0.92194442 
        639         640         641         642         643         644         645         646         647         648         649 
-1.89169133 -2.09634577 -0.20362101 -1.61876943 -2.24190764 -1.95361847 -1.32255954 -1.52354290 -1.94023990 -1.50784713 -1.41411035 
        650         651         652         653         654         655         656         657         658         659         660 
-1.71728967 -2.10050891 -1.15044093 -2.00751934 -1.68083964 -0.23804125 -1.63371558 -2.36083322 -1.65381407 -0.57981641 -1.43551045 
        661         662         663         664         665         666         667         668         669         670         671 
-0.27272480 -1.94526424 -1.15236399 -0.84185420 -2.28881258 -0.84666947 -1.26899671 -1.96699340 -0.61066450 -1.92880912 -1.80698851 
        672         673         674         675         676         677         678         679         680         681         682 
-2.05852072  1.28186151 -0.36124208 -1.85194195  0.07995594 -1.93702096 -0.86737886 -1.49737939 -1.85868297 -1.86414331 -1.39731604 
        683         684         685         686         687         688         689         690         691         692         693 
-1.99267229 -1.91305741 -1.75973785 -1.77416709 -1.68562929 -1.71378187 -2.04168145 -1.70132648 -2.38584717 -2.28438980 -1.88434747 
        694         695         696         697         698         699         700         701         702         703         704 
-1.93558579 -1.95905189  0.25223771  0.85418118 -0.61733173 -1.96504792 -1.63860844 -2.14867048 -1.71489226 -1.41977433 -2.30029311 
        705         706         707         708         709         710         711         712         713         714         715 
-1.94636754 -2.09150676 -2.02858300 -2.03610221 -1.55657182 -1.25087516 -1.57990178 -1.96701365 -1.99829493 -1.15313556 -0.98228074 
        716         717         718         719         720         721         722         723         724         725         726 
-1.64452612 -2.22834852 -0.74466797 -1.31951201 -1.44041464 -1.84710393 -2.62071174 -2.42171985 -1.56458154 -1.56475784 -1.98659105 
        727         728         729         730         731         732         733         734         735         736         737 
-1.08206528 -1.93444707 -1.90859572  1.31369810 -2.06821287  1.17361930 -2.06083650 -1.78601512 -1.40364085 -1.89759431  0.11189720 
        738         739         740         741         742         743         744         745         746         747         748 
-1.44535418 -2.06602039 -0.21072719 -0.88479864  1.34012834 -1.94133379 -1.99093577 -0.06928318 -1.22580029 -1.98865054  0.75093428 
        749         750         751         752         753         754         755         756         757         758         759 
-1.90092204  0.18892359 -2.01239242 -2.10571758 -2.22114520 -1.98002375 -1.93347397 -1.54665663 -1.29626892 -2.30713993 -1.98793731 
        760         761         762         763         764         765         766         767         768         769         770 
 0.78868749 -1.89245832  0.31616459 -1.83012563 -2.23740526 -0.78142328 -1.90919991 -1.44884622 -1.51825313 -2.57695351 -1.16651840 
        771         772         773         774         775         776         777         778         779         780         781 
-1.18823278 -1.79190212 -0.65627670  0.32895577 -1.99146953 -1.81272170 -0.84351298 -2.00702762 -1.91178176 -1.78853250 -1.83025537 
        782         783         784         785         786         787         788         789         790         791         792 
-1.95811326 -1.36698434 -1.75675587 -2.22312571 -1.50682156 -0.33646143  5.55323429 -0.76107005 -1.83757635 -1.90486784 -1.77195549 
        793         794         795         796         797         798         799         800         801         802         803 
-1.61559969 -0.04738551 -0.94235100 -0.73540999 -1.75102480 -2.20899977 -2.41372275 -1.93579489 -1.62886630 -0.68476655 -1.60008465 
        804         805         806         807         808         809         810         811         812         813         814 
 1.35070694 -1.46718216  0.29785335  1.43206046 -2.37196804 -1.65510535 -1.23089869 -1.85872866 -1.74310734 -2.26410244 -0.35760034 
        815         816         817         818         819         820         821         822         823         824         825 
-1.59739238 -2.01010616 -1.89049018 -1.54604858 -1.38746072 -1.89811157 -1.86161218 -1.75967352 -2.23656896 -2.41514264 -2.10244693 
        826         827         828         829         830         831         832         833         834         835         836 
-0.99061583 -0.78395406 -2.01012369 -2.07940618 -2.19956944 -2.05766557  2.18268089 -1.80615658 -1.63964665 -1.75480628 -2.07575304 
        837         838         839         840         841         842         843         844         845         846         847 
-1.84051261 -2.58176741  0.20536022 -1.76712212 -1.09924594 -0.77603747 -1.75316812 -1.77809171 -1.58094480 -0.95165127  0.37904441 
        848         849         850         851         852         853         854         855         856         857         858 
-1.78811348 -1.54231088  0.08003134 -1.38392415 -1.70777933 -2.13140733 -2.49760595 -1.77366636 -2.20490068 -2.34736080 -1.59598595 
        859         860         861         862         863         864         865         866         867         868         869 
-1.82679647 -0.08336541 -1.31866175 -2.35849200  0.44719548  1.82271523 -1.51688846 -1.64433566  3.63344334 -0.71640371 -2.10441143 
        870         871         872         873         874         875         876         877         878         879         880 
-2.11877420 -2.18043951 -1.08808410  0.30159647 -0.88784503 -1.03201174 -1.42240836  1.06947734  0.33762753 -1.18111095 -1.84869460 
        881         882         883         884         885         886         887         888         889         890         891 
-2.59575782 -2.37208979 -1.58857509 -1.57058389 -2.03440016 -1.78866333 -2.05383424 -2.41510711 -1.88132727 -1.86509473 -1.94192773 
        892         893         894         895         896         897         898         899         900         901         902 
-1.90859070 -1.58352519 -1.89840663 -1.48246013 -1.92925821 -1.53792125 -1.72195610 -1.70434956 -1.68042841 -2.09612355 -1.53687849 
        903         904         905         906         907         908         909         910         911         912         913 
-2.30024387 -1.71779382  0.82062926 -1.22675780 -1.63883990 -1.96241964 -1.71561464 -1.91819025 -2.13357866 -0.63574120 -1.72904128 
        914         915         916         917         918         919         920         921         922         923         924 
 6.10404808 -2.05485172 -1.82208566 -1.55785771 -0.56596382 -1.53897597 -1.89026773 -2.10575179 -0.76602097 -2.86588157 -1.87182610 
        925         926         927         928         929         930         931         932         933         934         935 
-0.79093759 -1.06675392 -1.65486359 -2.15958020 -1.88543964 -2.01734964 -1.79927407 -2.20181134 -3.45752375 -1.97242025 -2.19377235 
        936         937         938         939         940         941         942         943         944         945         946 
-2.00737304  0.21768881  0.55056904  3.59205714 -1.51699974 -1.50185414 -1.85530718 -1.72330186 -2.01915942 -1.40128672 -1.89862223 
        947         948         949         950         951         952         953         954         955         956         957 
-1.86074331 -4.68872554  0.32999615 -0.74406843 -1.84708546 -1.59342468 -1.71767708  0.18522040 -1.65529368 -1.56190934  0.54161838 
        958         959         960         961         962         963         964         965         966         967         968 
-1.54078603 -2.92537906 -1.39951251 -1.13785687 -1.59998818 -2.77724609 -1.83704607 -0.95542070 -1.69761323  1.53571251 -1.42244621 
        969         970         971         972         973         974         975         976         977         978         979 
-1.65880439 -1.80796246 -1.87047980 -1.91209260  1.18693177 -1.68819600 -2.23783693 -2.45951597  0.14123433  0.17272944 -1.64628998 
        980         981         982         983         984         985         986         987         988         989         990 
 0.35862953 -1.81845743 -1.67652448 -2.01254435 -1.97491873 -0.94186032 -1.95212603 -2.25889047 -0.12469382 -0.85178712 -1.48963174 
        991         992         993         994         995         996         997         998         999        1000 
-2.56259503 -1.11901435  1.12619256 -1.79235779 -1.78681959 -0.59980076 -1.53725505 -1.76566318 -1.39647053 -1.53690710 
 [ reached getOption("max.print") -- omitted 5250 entries ]

Build the model again and get summary. Then predict the values using predict() function.

compare_mypred=table(av=Test$Default_Payment,machinepredicted=my_prediction>0.5)
compare_mypred
   machinepredicted
av  FALSE TRUE
  0  4846   99
  1  1031  274
sum(diag(compare_mypred))/sum(compare_mypred)
[1] 0.8192

Compare the model with the test data to check the accuracy. We have 81.92% accuracy in this model.

# Plot ROC curve
library(ROCR)
Roc_Pred=prediction(my_prediction,Test$Default_Payment)
ROC_curve=performance(Roc_Pred,"tpr","fpr")
plot(ROC_curve)

To plot the graph for a better visual understanding, install ROCR package using install.package(ROCR). Here, as it has already been installed, just the library is called. Predict the dependant variable by comparing it with the test data and plot the curve.

compare_mypred1=table(av=Test$Default_Payment,machinepredicted=my_prediction>0.8)
compare_mypred1
   machinepredicted
av  FALSE TRUE
  0  4879   66
  1  1100  205
sum(diag(compare_mypred1))/sum(compare_mypred1)
[1] 0.81344

We now have the final prediction done by the machine with an accuracy of 81.34%.

LS0tDQp0aXRsZTogIkJhbmtDQyBMb2dpc3RpYyBSZWdyZXNzaW9uIHVzaW5nIE1hY2hpbmUgTGVhcm5pbmciDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCm15X2Jhbmtsb2dpPUJhbmtDQw0KVmlldyhteV9iYW5rbG9naSkNCnN0cihteV9iYW5rbG9naSkNCnN1bW1hcnkobXlfYmFua2xvZ2kpDQppcy5uYShzdW0obXlfYmFua2xvZ2kpKQ0Kc2V0LnNlZWQoNSkNCg0KYGBgDQoNCldlIGRvd25sb2FkIHRoZSByYXcgZGF0YSBhbmQgc2F2ZSBpdCBpbiBhIGxvY2F0aW9uIHRoYXQgd2UgcmVtZW1iZXIuIFByZWZlcnJhYmx5IGluIERlc2t0b3AuQXNzaWduIGEgbmFtZSBmb3IgdGhlIGZpbGUgdG8gY2FsbCBpbiBSLiBVbmRlcnN0YW5kIHRoZSBzdHJ1Y3R1cmUgYW5kIHRoZSBzdW1tYXJ5IG9mIHRoZSBkYXRhIHVzaW5nIHN0cigpIGFuZCBzdW1tYXJ5KCkgZnVuY3Rpb25zIHJlc3BlY3RpdmVseS5Vc2UgaXMubmEgZnVuY3Rpb24gdG8gc2VlIGlmIHRoZXJlIGFyZSBhbnkgbWlzc2luZyB2YWx1ZXMgaW4gdGhlIGdpdmVuIGRhdGFzZXQuVGhlbiBhc3NpZ24gc2V0LnNlZWQoKSB2YWx1ZSB0byBoYXZlIGEgY29uc3RhbnQgc2FtcGxlIHNpemUsIGV2ZXJ5dGltZSB3aGVuIHRoaXMgY29kZSBpcyBydW4uSGVyZSB3ZSBoYXZlIHNldCBpdCBhcyA1Lg0KYGBge3J9DQpsaWJyYXJ5KGNhVG9vbHMpDQpzYW1wbGVfdHJhaW50ZXN0PXNhbXBsZS5zcGxpdChteV9iYW5rbG9naSxTcGxpdFJhdGlvID0gMC44KQ0Kc2FtcGxlX3RyYWludGVzdA0KVHJhaW49c3Vic2V0KG15X2Jhbmtsb2dpLHNhbXBsZV90cmFpbnRlc3Q9PSJUUlVFIikNClRlc3Q9c3Vic2V0KG15X2Jhbmtsb2dpLHNhbXBsZV90cmFpbnRlc3Q9PSJGQUxTRSIpDQpgYGANCg0KV2Ugc3BsaXQgdGhlIGRhdGEgc2V0IGludG8gODA6MjAgYXMgd2Ugd2lsbCB1c2UgODAlIG9mIHRoZSBkYXRhIHNldCBmb3IgdGhlIG1hY2hpbmUgdG8gdHJhaW4gYW5kIHRoZSAyMCUgb2YgdGhlIGRhdGEgc2V0IGZvciB0aGUgbWFjaGluZSB0byB0ZXN0Lg0KSW4gdGhpcyBwcm9jZXNzLCB3ZSBuZWVkIHRvIGluc3RhbGwgQ2FUb29scyBwYWNrYWdlcyB1c2luZyBpbnN0YWxsLnBhY2thZ2VzKENhVG9vbHMpLiBIZXJlLCBpdCB3YXMgaW5zdGFsbGVkIGFscmVhZHksIHRoYXQgc3RlcCBpcyBza2lwcGVkIGFuZCB3ZSBjYWxsIHRoZSBDYVRvb3MgbGlicmFyeS5XZSBhc3NpZ24gdGhlIHNwbGl0IHJhdGlvIGFzIDAuOCB3aGljaCBpcyA4MCUuIFRoaXMgaXMgZG9uZSB1c2luZyBzYW1wbGUuc3BsaXQgZnVuY3Rpb24uDQpPbmNlIHRoZSBzYW1wbGUgaXMgc3BsaXQsIHdlIG5lZWQgdG8gYXNzaWduIHRoZSBkYXRhIGZvciBUcmFpbmluZyB1c2luZyBzdWJzZXQgZnVuY3Rpb24uIFJhbmRvbSB2YWx1ZSB0aGF0IGhhcyBUUlVFIHdpbGwgYmUgY29uc2lkZXJlZCBmb3IgdGhlIHRyYWluaW5nIGRhdGEgc2V0LiBUaGlzIGlzIGxpa2UgcmFuZG9tbHkgZmlsdGVyaW5nIDgwJSBvZiB0aGUgZGF0YSBzZXQgZm9yIHRoZSBtYWNoaW5lIHRvIFRyYWluLiBBbnkgRkFMU0UgdmFsdWUgd2lsbCBiZSB1c2VkIGJ5IHRoZSBtYWNoaW5lIGZvciBUZXN0aW5nIHRoZSBvdXRjb21lIG9mIHRoZSBtb2RlbC4NCmBgYHtyfQ0KIyBsb2dpc3RpYyBtb2RlbA0KbXlfbG9naXN0aWNzX2JrPWdsbShEZWZhdWx0X1BheW1lbnR+LixkYXRhID0gVHJhaW4sIGZhbWlseSA9ICdiaW5vbWlhbCcpDQpzdW1tYXJ5KG15X2xvZ2lzdGljc19iaykNCmBgYA0KDQpCdWlsZCB0aGUgbW9kZWwgdXNpbmcgZ2xtIGZ1bmN0aW9uLiBJbmNsdWRlIHRoZSBkZXBlbmRhbnQgdmFyaWFibGUgd2l0aCB0aGUgb3RoZXIgdmFyaWFibGVzIHVzaW5nIGEgZG90IGFzIHNob3duIGluIHRoZSBjb2RlLiBHZXQgdGhlIHN1bW1hcnkgb2YgdGhlIG1vZGVsIHRvIGtub3cgdGhlIFAgdmFsdWUgYW5kIEFJQyB2YWx1ZSAoQUlDIC0gQWthaWtlIEluZm9ybWF0aW9uIENyaXRlcmlhKS4gQUlDIHZhbHVlIGJhc2ljYWxseSBzaG93cyB0aGUgcXVhbGl0eSBvZiB0aGUgbW9kZWwuIEhlcmUgQUlDIGlzIDIxMzM2LiBXZSB3aWxsIG5vdyBiZSBhYmxlIHRvIHNlZSB0aGUgdmFyaWFsYmxlcyB0aGF0IGhhcyBQIFZhbHVlID4wLjA1LiBXZSBjb25zaWRlciBvbmx5IHRob3NlIHZhbHVlcyB0byBnZXQgYSBiZXR0ZXIgbW9kZWwuIFRob3NlIHZhcmlhYmxlcyB0aGF0IGFyZSB0byBiZSBjb25zaWRlcmVkIHdpbGwgYmUgZGVub3RlZCB3aXRoICIqIiwgIioqIiwgIioqKiIsICIuIi4gVmFyaWFibGVzIHRoYXQgZG9lcyBub3QgY29udGFpbiBhbnkgc3ltYm9scyB3aWxsIGhhdmUgdGhlIHBvaW50IHRoYXQgaXMgbmVhciB0byB6ZXJvLCBoZW5jZSB0aG9zZSBjYW4gYmUgcmVtb3ZlZC4NCmBgYHtyfQ0KbXlfYmtsb2dpMT1nbG0oRGVmYXVsdF9QYXltZW50fi4tUmVwYXltZW50X1N0YXR1c19GZWIsZGF0YSA9IFRyYWluLCBmYW1pbHkgPSAnYmlub21pYWwnKQ0Kc3VtbWFyeShteV9ia2xvZ2kxKQ0KbXlfYmtsb2dpMj1nbG0oRGVmYXVsdF9QYXltZW50fi4tTWFyY2hfQmlsbF9BbW91bnQsZGF0YSA9IFRyYWluLCBmYW1pbHkgPSAnYmlub21pYWwnKQ0Kc3VtbWFyeShteV9ia2xvZ2kyKQ0KbXlfYmtsb2dpMz1nbG0oRGVmYXVsdF9QYXltZW50fi4tQXByaWxfQmlsbF9BbW91bnQsZGF0YSA9IFRyYWluLCBmYW1pbHkgPSAnYmlub21pYWwnKQ0Kc3VtbWFyeShteV9ia2xvZ2kzKQ0KbXlfYmtsb2dpND1nbG0oRGVmYXVsdF9QYXltZW50fi4tTWF5X0JpbGxfQW1vdW50LGRhdGEgPSBUcmFpbiwgZmFtaWx5ID0gJ2Jpbm9taWFsJykNCnN1bW1hcnkobXlfYmtsb2dpNCkNCm15X2JrbG9naTU9Z2xtKERlZmF1bHRfUGF5bWVudH4uLUp1bmVfQmlsbF9BbW91bnQsZGF0YSA9IFRyYWluLCBmYW1pbHkgPSAnYmlub21pYWwnKQ0Kc3VtbWFyeShteV9ia2xvZ2k1KQ0KbXlfYmtsb2dpNj1nbG0oRGVmYXVsdF9QYXltZW50fi4tUHJldmlvdXNfUGF5bWVudF9NYXJjaCxkYXRhID0gVHJhaW4sIGZhbWlseSA9ICdiaW5vbWlhbCcpDQpzdW1tYXJ5KG15X2JrbG9naTYpDQpteV9ia2xvZ2k3PWdsbShEZWZhdWx0X1BheW1lbnR+Li1QcmV2aW91c19QYXltZW50X01heSxkYXRhID0gVHJhaW4sIGZhbWlseSA9ICdiaW5vbWlhbCcpDQpzdW1tYXJ5KG15X2JrbG9naTcpDQpteV9ia2xvZ2k4PWdsbShEZWZhdWx0X1BheW1lbnR+Li1QcmV2aW91c19QYXltZW50X0p1bmUsZGF0YSA9IFRyYWluLCBmYW1pbHkgPSAnYmlub21pYWwnKQ0Kc3VtbWFyeShteV9ia2xvZ2k4KQ0KYGBgDQoNClRoZSBhYm92ZSBjb2RlcyBzaG93IGhvdyB3ZSByZW1vdmVkIGNlcnRhaW4gdmFyaWFibGVzIHRoYXQgbmVlZCBub3QgYmUgY29uc2lkZXJlZCBhcyBpdCBhZmZlY3RzIHRoZSBBSUMgdmFsdWUgdG8gYnVpbGQgdGhlIGJlc3QgbW9kZWwuDQoNCmBgYHtyfQ0KIyBGaW5hbCBtb2RlbCBhZnRlciBjaGVja2luZyBBSUMgdmFsdWUNCm15X2JrbG9naV9iZXN0PWdsbShEZWZhdWx0X1BheW1lbnR+Li1SZXBheW1lbnRfU3RhdHVzX0ZlYi1NYXJjaF9CaWxsX0Ftb3VudC1BcHJpbF9CaWxsX0Ftb3VudC1NYXlfQmlsbF9BbW91bnQtSnVuZV9CaWxsX0Ftb3VudC1QcmV2aW91c19QYXltZW50X01hcmNoLVByZXZpb3VzX1BheW1lbnRfTWF5LVByZXZpb3VzX1BheW1lbnRfSnVuZSxkYXRhID0gVHJhaW4sIGZhbWlseSA9ICdiaW5vbWlhbCcpDQpzdW1tYXJ5KG15X2JrbG9naV9iZXN0KQ0KbXlfcHJlZGljdGlvbj1wcmVkaWN0KG15X2JrbG9naV9iZXN0LFRlc3QpDQpteV9wcmVkaWN0aW9uDQpgYGANCkJ1aWxkIHRoZSBtb2RlbCBhZ2FpbiBhbmQgZ2V0IHN1bW1hcnkuIFRoZW4gcHJlZGljdCB0aGUgdmFsdWVzIHVzaW5nIHByZWRpY3QoKSBmdW5jdGlvbi4NCg0KYGBge3J9DQpjb21wYXJlX215cHJlZD10YWJsZShhdj1UZXN0JERlZmF1bHRfUGF5bWVudCxtYWNoaW5lcHJlZGljdGVkPW15X3ByZWRpY3Rpb24+MC41KQ0KY29tcGFyZV9teXByZWQNCnN1bShkaWFnKGNvbXBhcmVfbXlwcmVkKSkvc3VtKGNvbXBhcmVfbXlwcmVkKQ0KYGBgDQoNCkNvbXBhcmUgdGhlIG1vZGVsIHdpdGggdGhlIHRlc3QgZGF0YSB0byBjaGVjayB0aGUgYWNjdXJhY3kuIFdlIGhhdmUgODEuOTIlIGFjY3VyYWN5IGluIHRoaXMgbW9kZWwuDQoNCmBgYHtyfQ0KIyBQbG90IFJPQyBjdXJ2ZQ0KbGlicmFyeShST0NSKQ0KUm9jX1ByZWQ9cHJlZGljdGlvbihteV9wcmVkaWN0aW9uLFRlc3QkRGVmYXVsdF9QYXltZW50KQ0KUk9DX2N1cnZlPXBlcmZvcm1hbmNlKFJvY19QcmVkLCJ0cHIiLCJmcHIiKQ0KcGxvdChST0NfY3VydmUpDQpgYGANClRvIHBsb3QgdGhlIGdyYXBoIGZvciBhIGJldHRlciB2aXN1YWwgdW5kZXJzdGFuZGluZywgaW5zdGFsbCBST0NSIHBhY2thZ2UgdXNpbmcgaW5zdGFsbC5wYWNrYWdlKFJPQ1IpLiBIZXJlLCBhcyBpdCBoYXMgYWxyZWFkeSBiZWVuIGluc3RhbGxlZCwganVzdCB0aGUgbGlicmFyeSBpcyBjYWxsZWQuIFByZWRpY3QgdGhlIGRlcGVuZGFudCB2YXJpYWJsZSBieSBjb21wYXJpbmcgaXQgd2l0aCB0aGUgdGVzdCBkYXRhIGFuZCBwbG90IHRoZSBjdXJ2ZS4NCg0KYGBge3J9DQpjb21wYXJlX215cHJlZDE9dGFibGUoYXY9VGVzdCREZWZhdWx0X1BheW1lbnQsbWFjaGluZXByZWRpY3RlZD1teV9wcmVkaWN0aW9uPjAuOCkNCmNvbXBhcmVfbXlwcmVkMQ0Kc3VtKGRpYWcoY29tcGFyZV9teXByZWQxKSkvc3VtKGNvbXBhcmVfbXlwcmVkMSkNCg0KYGBgDQpXZSBub3cgaGF2ZSB0aGUgZmluYWwgcHJlZGljdGlvbiBkb25lIGJ5IHRoZSBtYWNoaW5lIHdpdGggYW4gYWNjdXJhY3kgb2YgODEuMzQlLg0K