Load all the libraries or functions that you will use to for the rest of the assignment. It is helpful to define your libraries and functions at the top of a report, so that others can know what they need for the report to compile correctly.
##r chunk
library(reticulate)
##r chunk
py_install('pandas')
py_install('numpy')
py_install('bs4', pip=T)
py_install('regex', pip = T)
py_install('nltk')
py_install('gensim')
py_install('lxml')
Load the Python libraries or functions that you will use for that section.
##python chunk
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup
import re
import nltk
import gensim
from nltk.corpus import abc
from nltk.corpus import stopwords
import nltk
The dataset is a set of text messages that have been coded as: - “ham”: normal text messages - “spam”: bad text messages
Import the data using either R or Python. I put a Python chunk here because you will need one to import the data, but if you want to first import into R, that’s fine.
##python chunk
import pandas as pd
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
SOdata = pd.read_csv("spam_text.csv")
SOdata.head()
## category text
## 0 ham Go until jurong point, crazy.. Available only ...
## 1 ham Ok lar... Joking wif u oni...
## 2 spam Free entry in 2 a wkly comp to win FA Cup fina...
## 3 ham U dun say so early hor... U c already then say...
## 4 ham Nah I don't think he goes to usf, he lives aro...
Use one of our clean text functions to clean up the text column in the dataset.
##python chunk
import re
from nltk.corpus import stopwords
import nltk
import lxml
REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]') #remove symbols with space
BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]') #take out symbols altogether
STOPWORDS = set(stopwords.words('english')) #stopwrods
def clean_text(text):
text = BeautifulSoup(text, "html.parser").text # HTML decoding
text = text.lower() # lowercase text
text = REPLACE_BY_SPACE_RE.sub(' ', text) # replace REPLACE_BY_SPACE_RE symbols by space in text
text = BAD_SYMBOLS_RE.sub('', text) # delete symbols which are in BAD_SYMBOLS_RE from text
text = ' '.join(word for word in text.split() if word not in STOPWORDS) # delete stopwors from text
return text
SOdata['category'] = SOdata['category'].apply(clean_text)
SOdata.head()
## category text
## 0 ham Go until jurong point, crazy.. Available only ...
## 1 ham Ok lar... Joking wif u oni...
## 2 spam Free entry in 2 a wkly comp to win FA Cup fina...
## 3 ham U dun say so early hor... U c already then say...
## 4 ham Nah I don't think he goes to usf, he lives aro...
Split the data into testing and training data.
##python chunk
X = SOdata['category']
y = SOdata['text']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state = 42)
For FastText and word2vec, create the tokenized vectors of the text.
##python chunk
tokenized_train = [nltk.tokenize.word_tokenize(text)
for text in X_train.to_list()]
tokenized_test = [nltk.tokenize.word_tokenize(text)
for text in X_test.to_list()]
Build the word2vec model.
##python chunk
w2v_model = gensim.models.Word2Vec(tokenized_train,
size=100, window=6,
min_count=2, iter=5, workers=4)
Convert the model into a set of features to use in our classifier.
##python chunk
def document_vectorizer(corpus, model, num_features):
vocabulary = set(model.wv.index2word)
def average_word_vectors(words, model, vocabulary, num_features):
feature_vector = np.zeros((num_features,), dtype="float64")
nwords = 0.
for word in words:
if word in vocabulary:
nwords = nwords + 1.
feature_vector = np.add(feature_vector, model.wv[word])
if nwords:
feature_vector = np.divide(feature_vector, nwords)
return feature_vector
features = [average_word_vectors(tokenized_sentence, model, vocabulary, num_features)
for tokenized_sentence in corpus]
return np.array(features)
avg_wv_train_features = document_vectorizer(corpus=tokenized_train,
model=w2v_model,
num_features=100)
avg_wv_test_features = document_vectorizer(corpus=tokenized_test,
model=w2v_model,
num_features=100)
In class, we used logistic regression to classify the data. You can use any machine learning algorithm you want here, and build a classification model.
##python chunk
my_category = ["ham", "spam"]
#build a log model
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(solver='lbfgs', multi_class='ovr', max_iter=10000)
#fit the data to the log model
logreg = logreg.fit(avg_wv_train_features, y_train)
Print out the accuracy, recall, and precision of your model.
##python chunk
y_pred = logreg.predict(avg_wv_test_features)
#print out results
print('accuracy %s' % accuracy_score(y_pred, y_test))
#print(classification_report(y_test, y_pred,target_names=my_category))
## accuracy 0.008071748878923767
Using the same data, build a FastText model.
##python chunk
from gensim.models.fasttext import FastText
#build a fast test model
ft_model = FastText(tokenized_train, size=100, window=6,
min_count=2, iter=5, workers=4)
Convert the FastText model into features for prediction.
##python chunk
avg_ft_train_features = document_vectorizer(corpus=tokenized_train, model=ft_model,
num_features=100)
avg_ft_test_features = document_vectorizer(corpus=tokenized_test, model=ft_model,
num_features=100)
Using the same machine learning algorithm as above, build a classifier model that uses the FastText data to predict the categories.
##python chunk
logreg = LogisticRegression(solver='lbfgs', multi_class='ovr', max_iter=10000)
logreg = logreg.fit(avg_ft_train_features, y_train)
y_pred = logreg.predict(avg_ft_test_features)
Print out the accuracy, recall, and precision of your model.
##python chunk
print('accuracy %s' % accuracy_score(y_pred, y_test))
#print(classification_report(y_test, y_pred,target_names=my_category))
## accuracy 0.008071748878923767
From accuracy result logistic regression model does not show good predictive power.