The main purpose of the study is to analysis Turkey earthquake data set obtained from AFAD (The Disaster and Emergency Management Presidency) online data base using data mining techniques. In this way, it is targeted to be created awareness.
Data set includes earthquakes with magnitude between 4.0 and 8.0. Number of observations is 6510, and number of variables is 12. Earthquake data set is consisted of time series from year 1900 to date 2020-02-08. The definitions of the variables revised in the data set are given below.
[1] “Year” “Month” “Day” “Hour”
[5] “Minute” “Second” “Latitude” “Longitude”
[9] “Depth” “Magnitude” “Place” “Magnitude_Class”
Loading libraries
lapply(c("readr", "tibble", "xts", "tidyr", "dplyr", "lubridate", "formattable", "ggplot2", "ggpubr", "xlsx","formattable", "GGally", "ggrepel", "leaflet", "sf", "widgetframe", "stringr", "ggridges"), require, character.only = TRUE)
## Loading required package: readr
## Loading required package: tibble
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
## Loading required package: tidyr
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
## first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: formattable
## Loading required package: ggplot2
## Loading required package: ggpubr
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:tidyr':
##
## extract
## Loading required package: xlsx
## Loading required package: GGally
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
##
## Attaching package: 'GGally'
## The following object is masked from 'package:dplyr':
##
## nasa
## Loading required package: ggrepel
## Loading required package: leaflet
##
## Attaching package: 'leaflet'
## The following object is masked from 'package:xts':
##
## addLegend
## Loading required package: sf
## Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
## Loading required package: widgetframe
## Loading required package: htmlwidgets
## Loading required package: stringr
## Loading required package: ggridges
## [[1]]
## [1] TRUE
##
## [[2]]
## [1] TRUE
##
## [[3]]
## [1] TRUE
##
## [[4]]
## [1] TRUE
##
## [[5]]
## [1] TRUE
##
## [[6]]
## [1] TRUE
##
## [[7]]
## [1] TRUE
##
## [[8]]
## [1] TRUE
##
## [[9]]
## [1] TRUE
##
## [[10]]
## [1] TRUE
##
## [[11]]
## [1] TRUE
##
## [[12]]
## [1] TRUE
##
## [[13]]
## [1] TRUE
##
## [[14]]
## [1] TRUE
##
## [[15]]
## [1] TRUE
##
## [[16]]
## [1] TRUE
##
## [[17]]
## [1] TRUE
##
## [[18]]
## [1] TRUE
Loading earthquage data set from year 1900 to date 2020-02-08
df<-read.csv("Catalogueafad08.2.2020-tamamı.csv")
names(df)
## [1] "No" "Zaman..UTC." "Ref1"
## [4] "Kaynak.Aç.klama.1" "Enlem" "Boylam"
## [7] "Derinlik" "Sabit.Derinlik" "Kaynak.No.2"
## [10] "Kaynak.Aç.klama.2" "Tip" "Büyüklük"
## [13] "Kaynak.No.3" "Kaynak.Aç.klama.3" "Yer"
head(df)
## No Zaman..UTC. Ref1 Kaynak.Aç.klama.1 Enlem Boylam Derinlik
## 1 0 2020-01-28 20:10:26 0 39.0131 27.8700 5.08
## 2 0 2020-01-28 14:53:51 0 39.0831 27.8295 7.00
## 3 0 2020-01-28 11:26:14 0 39.1001 27.8411 6.98
## 4 0 2020-01-27 16:12:00 0 38.3950 39.1333 11.94
## 5 0 2020-01-26 10:12:17 0 38.4111 39.1530 12.25
## 6 0 2020-01-26 02:22:45 0 38.2440 38.8013 12.52
## Sabit.Derinlik Kaynak.No.2 Kaynak.Aç.klama.2 Tip Büyüklük Kaynak.No.3
## 1 - 7 AFAD-DDA Mw 4.7 7
## 2 - 7 AFAD-DDA Mw 4.1 7
## 3 - 7 AFAD-DDA Mw 4.8 7
## 4 - 7 AFAD-DDA Mw 4.2 7
## 5 - 7 AFAD-DDA Mw 4.1 7
## 6 - 7 AFAD-DDA Mw 4.3 7
## Kaynak.Aç.klama.3 Yer
## 1 AFAD-DDA -
## 2 AFAD-DDA -
## 3 AFAD-DDA -
## 4 AFAD-DDA -
## 5 AFAD-DDA -
## 6 AFAD-DDA -
dim(df)# 6462 15
## [1] 6510 15
str(df)
## 'data.frame': 6510 obs. of 15 variables:
## $ No : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Zaman..UTC. : Factor w/ 6510 levels "1900-01-18 15:30:00",..: 6510 6509 6508 6507 6506 6505 6504 6503 6502 6501 ...
## $ Ref1 : int 0 0 0 0 0 0 0 0 0 0 ...
## $ Kaynak.Aç.klama.1: Factor w/ 5 levels " ","Dakika ve saniye bilgisi yok",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Enlem : num 39 39.1 39.1 38.4 38.4 ...
## $ Boylam : num 27.9 27.8 27.8 39.1 39.2 ...
## $ Derinlik : num 5.08 7 6.98 11.94 12.25 ...
## $ Sabit.Derinlik : Factor w/ 2 levels "-","*": 1 1 1 1 1 1 1 1 1 1 ...
## $ Kaynak.No.2 : int 7 7 7 7 7 7 7 7 7 7 ...
## $ Kaynak.Aç.klama.2: Factor w/ 26 levels "AFAD-DDA","Alsan ve Di?.1975",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Tip : Factor w/ 8 levels "mb","md","Md",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ Büyüklük : num 4.7 4.1 4.8 4.2 4.1 4.3 4.1 4.3 4.1 4.3 ...
## $ Kaynak.No.3 : int 7 7 7 7 7 7 7 7 7 7 ...
## $ Kaynak.Aç.klama.3: Factor w/ 32 levels "AFAD-DDA","Alsan ve Di?.1975",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Yer : Factor w/ 79 levels "-","?arköy-Tekirda?",..: 1 1 1 1 1 1 1 1 1 1 ...
unique(df$Yer)
## [1] - Van-Merkez
## [3] Kovanc?lar-Elaz?? Rodos Adas? Yunanistan
## [5] Bingöl Pülümür-Tunceli
## [7] Sultanda??-Afyon Bolvadin-Afyon
## [9] Orta-Çak?r? Düzce-Bolu
## [11] Gölcük-Kocaeli Yüre?ir-Adana
## [13] Akdeniz Dinar-Afyon
## [15] Sfrihisar-?zmir Erzican
## [17] Ermenistan ?enkaya/Erzurum-Sar?kam??/Kars
## [19] Çald?ran-Van Lice-Diyarbak?r
## [21] Kütahya Kula-Manisa
## [23] S?nd?rg?-Bal?ksir Bart?n Aç?klar?-Karadeniz
## [25] Tunceli Akyaz?-Sakarya
## [27] Karl?ova-Bingöl Varto-Mu?
## [29] Karacabey-Bursa Sincik-Ad?yaman
## [31] Yalova Köyce?iz/Mu?la Aç?klar?-Akdeniz
## [33] Ege Denizi Eski?hir
## [35] Ayd?n Karabük
## [37] Çanakkale Çank?r?
## [39] ?zmir Aç?klar?-Ege Denizi Adana
## [41] Edremit Aç?klar?-Ege Denizi U?ak
## [43] Gerede-Bolu Ilgaz-Çak?r?
## [45] Sakarya Erbaa-Tokat
## [47] Dursunbey-Bal?kesir Manisa
## [49] Mu?la Aç?klar?-Ege Denizi A?r?
## [51] Mu?la Yozgat
## [53] Gürcistan Dikili-?zmir
## [55] Kaman-K?r?ehir Hamur-A?r?
## [57] Gönen-Bal?kesir ?ran
## [59] Koyulhisar-Sivas Harmanc?k-Bursa
## [61] ?zmir Aç?klar?- Ege Denizi Datça Aç?klar?-Ege Dizi
## [63] Bat? Akdeniz Alt?nyayla-Burdur
## [65] Köprüköy-Erzurum Ayval?k-Bal?kesir
## [67] Tokat Burdur
## [69] ?arköy-Tekirda? Antalya Aç?klar?-Akdeniz
## [71] Çorum Sefrihisar Aç?klar?/Ege Denizi
## [73] Malatya/laz?? S?n?r? Oltu-Erzurum
## [75] Kars Pütürge-Malatya
## [77] Yunaistan Malazgirit-Mu?
## [79] Pasinler-Erzurum
## 79 Levels: - ?arköy-Tekirda? ?enkaya/Erzurum-Sar?kam??/Kars ... Yüre?ir-Adana
Classification of time series by year, month, day, hour, minute, and second
df1<-df[,c(2, 5, 6, 7, 12, 15)]
year<-tibble(Year=as.integer(year(df1$Zaman..UTC.)))
month<-tibble(Month=as.integer(month(df1$Zaman..UTC.)))
day<-tibble(Day=as.integer(day(df1$Zaman..UTC.)))
hour<-tibble(Hour=as.integer(hour(df1$Zaman..UTC.)))
minute<-tibble(Minute=as.integer(minute(df1$Zaman..UTC.)))
second<-tibble(Second=as.integer(second(df1$Zaman..UTC.)))
df2<-cbind(year, month, day, hour, minute, second, Latitude=as.numeric(df1[,2]),Longitude=as.numeric(df1[,3]), Depth= as.numeric(df1[,4]),Magnitude= as.numeric(df1[,5]), Place=as.character(df1[,6]))
df2<-as_tibble(df2)
str(df2)
## Classes 'tbl_df', 'tbl' and 'data.frame': 6510 obs. of 11 variables:
## $ Year : int 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 ...
## $ Month : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Day : int 28 28 28 27 26 26 25 25 25 25 ...
## $ Hour : int 20 14 11 16 10 2 17 16 16 16 ...
## $ Minute : int 10 53 26 12 12 22 49 46 45 44 ...
## $ Second : int 26 51 14 0 17 45 47 58 6 23 ...
## $ Latitude : num 39 39.1 39.1 38.4 38.4 ...
## $ Longitude: num 27.9 27.8 27.8 39.1 39.2 ...
## $ Depth : num 5.08 7 6.98 11.94 12.25 ...
## $ Magnitude: num 4.7 4.1 4.8 4.2 4.1 4.3 4.1 4.3 4.1 4.3 ...
## $ Place : Factor w/ 79 levels "-","?arköy-Tekirda?",..: 1 1 1 1 1 1 1 1 1 1 ...
c<-as.vector(which(df2$Place=="Gürcistan"))
d<-as.vector(which(df2$Place=="Rodos Adas?"))
e<-as.vector(which(df2$Place=="Yunanistan"))
f<-as.vector(which(df2$Place=="?ran"))
g<-as.vector(which(df2$Place=="Yunaistan"))
df2<-df2[-c(c,d,e,f,g),]#
str(df2)#6510
## Classes 'tbl_df', 'tbl' and 'data.frame': 6503 obs. of 11 variables:
## $ Year : int 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 ...
## $ Month : int 1 1 1 1 1 1 1 1 1 1 ...
## $ Day : int 28 28 28 27 26 26 25 25 25 25 ...
## $ Hour : int 20 14 11 16 10 2 17 16 16 16 ...
## $ Minute : int 10 53 26 12 12 22 49 46 45 44 ...
## $ Second : int 26 51 14 0 17 45 47 58 6 23 ...
## $ Latitude : num 39 39.1 39.1 38.4 38.4 ...
## $ Longitude: num 27.9 27.8 27.8 39.1 39.2 ...
## $ Depth : num 5.08 7 6.98 11.94 12.25 ...
## $ Magnitude: num 4.7 4.1 4.8 4.2 4.1 4.3 4.1 4.3 4.1 4.3 ...
## $ Place : Factor w/ 79 levels "-","?arköy-Tekirda?",..: 1 1 1 1 1 1 1 1 1 1 ...
#Categorizing magnitudes of earthquakes
df2<-mutate(df2, Magnitude_Class=cut(df2$Magnitude, breaks=c(3.99, 5, 6, 7, 8), labels=c("4-5", "5-6", "6-7", "7-8")))
Density of earthquakes
In chart, curve “green” indicates the average of earthquake magnitudes.On the other hand, yintercept values including earthquakes of magnitudes 5.0, 6.0, and 7.0 is shown in curve “blue”.
df2 %>% ggplot(aes(Year, Magnitude))+
geom_point(size=1, col="red")+
ggtitle("Density of Earthquakes by Years") +
xlab("Year") + ylab("Magnitude")+
scale_x_continuous(breaks=seq(min(df2$Year),max(df2$Year), 10))+
labs(caption ="Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=14, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=12))+
geom_hline(yintercept=mean(df2$Magnitude), linetype="twodash", color = "green", size=1)+
geom_hline(yintercept=5, linetype="twodash", color = "blue", size=1)+
geom_hline(yintercept=6, linetype="twodash", color = "blue", size=1)+
geom_hline(yintercept=7, linetype="twodash", color = "blue", size=1)
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Number of earthquakes by years
year<-df2 %>% group_by(Year, Magnitude_Class) %>% tally()
formattable (year)
Year
|
Magnitude_Class
|
n
|
1900
|
4-5
|
33
|
1900
|
5-6
|
6
|
1901
|
4-5
|
12
|
1901
|
5-6
|
5
|
1901
|
6-7
|
1
|
1902
|
4-5
|
13
|
1902
|
5-6
|
10
|
1903
|
4-5
|
27
|
1903
|
5-6
|
5
|
1903
|
6-7
|
1
|
1904
|
4-5
|
23
|
1904
|
5-6
|
3
|
1905
|
4-5
|
9
|
1905
|
5-6
|
9
|
1905
|
6-7
|
2
|
1906
|
4-5
|
6
|
1906
|
5-6
|
2
|
1906
|
6-7
|
1
|
1907
|
4-5
|
18
|
1907
|
5-6
|
4
|
1908
|
4-5
|
20
|
1908
|
5-6
|
5
|
1908
|
6-7
|
1
|
1909
|
4-5
|
14
|
1909
|
5-6
|
7
|
1909
|
6-7
|
1
|
1910
|
4-5
|
12
|
1910
|
5-6
|
4
|
1910
|
6-7
|
1
|
1911
|
4-5
|
10
|
1911
|
5-6
|
2
|
1911
|
6-7
|
1
|
1912
|
4-5
|
11
|
1912
|
5-6
|
4
|
1912
|
6-7
|
2
|
1912
|
7-8
|
1
|
1913
|
4-5
|
3
|
1913
|
5-6
|
2
|
1914
|
4-5
|
20
|
1914
|
5-6
|
6
|
1914
|
6-7
|
1
|
1915
|
4-5
|
1
|
1915
|
5-6
|
5
|
1916
|
4-5
|
2
|
1916
|
5-6
|
2
|
1916
|
7-8
|
1
|
1917
|
4-5
|
6
|
1917
|
5-6
|
1
|
1918
|
4-5
|
2
|
1918
|
5-6
|
5
|
1918
|
6-7
|
1
|
1919
|
4-5
|
4
|
1919
|
5-6
|
6
|
1919
|
6-7
|
1
|
1920
|
4-5
|
5
|
1920
|
5-6
|
5
|
1921
|
5-6
|
7
|
1922
|
4-5
|
5
|
1922
|
5-6
|
3
|
1923
|
4-5
|
3
|
1923
|
5-6
|
4
|
1924
|
4-5
|
11
|
1924
|
5-6
|
5
|
1924
|
6-7
|
1
|
1925
|
4-5
|
19
|
1925
|
5-6
|
5
|
1926
|
4-5
|
12
|
1926
|
5-6
|
14
|
1926
|
6-7
|
2
|
1926
|
7-8
|
1
|
1927
|
4-5
|
1
|
1927
|
5-6
|
2
|
1928
|
4-5
|
7
|
1928
|
5-6
|
4
|
1928
|
6-7
|
2
|
1929
|
4-5
|
12
|
1929
|
5-6
|
2
|
1929
|
6-7
|
1
|
1930
|
4-5
|
15
|
1930
|
5-6
|
8
|
1931
|
4-5
|
6
|
1931
|
5-6
|
1
|
1932
|
4-5
|
4
|
1932
|
5-6
|
2
|
1933
|
4-5
|
9
|
1933
|
5-6
|
1
|
1933
|
6-7
|
1
|
1934
|
4-5
|
3
|
1934
|
5-6
|
3
|
1935
|
4-5
|
9
|
1935
|
5-6
|
3
|
1935
|
6-7
|
2
|
1936
|
4-5
|
13
|
1936
|
5-6
|
5
|
1937
|
4-5
|
6
|
1937
|
5-6
|
1
|
1938
|
4-5
|
12
|
1938
|
5-6
|
1
|
1938
|
6-7
|
1
|
1939
|
4-5
|
9
|
1939
|
5-6
|
10
|
1939
|
6-7
|
1
|
1939
|
7-8
|
1
|
1940
|
4-5
|
15
|
1940
|
5-6
|
7
|
1940
|
6-7
|
1
|
1941
|
4-5
|
5
|
1941
|
5-6
|
11
|
1942
|
4-5
|
3
|
1942
|
5-6
|
8
|
1942
|
6-7
|
2
|
1943
|
4-5
|
8
|
1943
|
5-6
|
5
|
1943
|
6-7
|
1
|
1943
|
7-8
|
1
|
1944
|
4-5
|
4
|
1944
|
5-6
|
15
|
1944
|
6-7
|
1
|
1944
|
7-8
|
1
|
1945
|
4-5
|
7
|
1945
|
5-6
|
6
|
1946
|
4-5
|
3
|
1946
|
5-6
|
4
|
1947
|
4-5
|
4
|
1947
|
5-6
|
1
|
1948
|
4-5
|
9
|
1948
|
5-6
|
2
|
1949
|
4-5
|
8
|
1949
|
5-6
|
6
|
1949
|
6-7
|
2
|
1950
|
4-5
|
10
|
1950
|
5-6
|
2
|
1951
|
4-5
|
12
|
1951
|
5-6
|
2
|
1951
|
6-7
|
1
|
1952
|
4-5
|
14
|
1952
|
5-6
|
4
|
1953
|
4-5
|
30
|
1953
|
5-6
|
6
|
1953
|
7-8
|
1
|
1954
|
4-5
|
18
|
1954
|
5-6
|
4
|
1955
|
4-5
|
5
|
1955
|
5-6
|
2
|
1955
|
6-7
|
1
|
1956
|
4-5
|
25
|
1956
|
5-6
|
11
|
1956
|
6-7
|
2
|
1956
|
7-8
|
1
|
1957
|
4-5
|
19
|
1957
|
5-6
|
9
|
1957
|
6-7
|
1
|
1957
|
7-8
|
2
|
1958
|
4-5
|
16
|
1958
|
5-6
|
6
|
1959
|
4-5
|
22
|
1959
|
5-6
|
8
|
1960
|
4-5
|
20
|
1960
|
5-6
|
2
|
1961
|
4-5
|
11
|
1961
|
5-6
|
4
|
1961
|
6-7
|
1
|
1962
|
4-5
|
8
|
1962
|
5-6
|
4
|
1963
|
4-5
|
9
|
1963
|
5-6
|
5
|
1963
|
6-7
|
1
|
1964
|
4-5
|
37
|
1964
|
5-6
|
3
|
1964
|
6-7
|
1
|
1965
|
4-5
|
40
|
1965
|
5-6
|
6
|
1966
|
4-5
|
68
|
1966
|
5-6
|
8
|
1966
|
6-7
|
2
|
1967
|
4-5
|
89
|
1967
|
5-6
|
7
|
1967
|
6-7
|
1
|
1968
|
4-5
|
91
|
1968
|
5-6
|
6
|
1968
|
6-7
|
1
|
1969
|
4-5
|
97
|
1969
|
5-6
|
9
|
1969
|
6-7
|
2
|
1970
|
4-5
|
242
|
1970
|
5-6
|
20
|
1970
|
7-8
|
1
|
1971
|
4-5
|
126
|
1971
|
5-6
|
9
|
1971
|
6-7
|
1
|
1972
|
4-5
|
50
|
1972
|
5-6
|
1
|
1973
|
4-5
|
43
|
1974
|
4-5
|
54
|
1974
|
5-6
|
1
|
1975
|
4-5
|
73
|
1975
|
5-6
|
3
|
1975
|
6-7
|
1
|
1976
|
4-5
|
98
|
1976
|
5-6
|
7
|
1976
|
6-7
|
1
|
1977
|
4-5
|
55
|
1977
|
5-6
|
7
|
1978
|
4-5
|
47
|
1978
|
5-6
|
2
|
1979
|
4-5
|
44
|
1979
|
5-6
|
7
|
1980
|
4-5
|
51
|
1980
|
5-6
|
4
|
1980
|
6-7
|
1
|
1981
|
4-5
|
57
|
1981
|
5-6
|
1
|
1982
|
4-5
|
88
|
1982
|
5-6
|
1
|
1983
|
4-5
|
95
|
1983
|
5-6
|
4
|
1983
|
6-7
|
2
|
1984
|
4-5
|
106
|
1984
|
5-6
|
3
|
1985
|
4-5
|
70
|
1985
|
5-6
|
1
|
1986
|
4-5
|
85
|
1986
|
5-6
|
4
|
1987
|
4-5
|
79
|
1987
|
5-6
|
2
|
1988
|
4-5
|
73
|
1988
|
5-6
|
4
|
1988
|
6-7
|
1
|
1989
|
4-5
|
65
|
1989
|
5-6
|
6
|
1990
|
4-5
|
99
|
1990
|
5-6
|
3
|
1991
|
4-5
|
76
|
1991
|
5-6
|
7
|
1992
|
4-5
|
83
|
1992
|
5-6
|
3
|
1992
|
6-7
|
1
|
1993
|
4-5
|
53
|
1993
|
5-6
|
1
|
1994
|
4-5
|
60
|
1994
|
5-6
|
4
|
1995
|
4-5
|
84
|
1995
|
5-6
|
4
|
1995
|
6-7
|
1
|
1996
|
4-5
|
143
|
1996
|
5-6
|
6
|
1996
|
6-7
|
1
|
1997
|
4-5
|
76
|
1997
|
5-6
|
4
|
1998
|
4-5
|
72
|
1998
|
5-6
|
5
|
1998
|
6-7
|
1
|
1999
|
4-5
|
228
|
1999
|
5-6
|
10
|
1999
|
7-8
|
2
|
2000
|
4-5
|
72
|
2000
|
5-6
|
5
|
2001
|
4-5
|
84
|
2001
|
5-6
|
3
|
2002
|
4-5
|
87
|
2002
|
5-6
|
3
|
2002
|
6-7
|
1
|
2003
|
4-5
|
93
|
2003
|
5-6
|
10
|
2003
|
6-7
|
1
|
2004
|
4-5
|
102
|
2004
|
5-6
|
12
|
2005
|
4-5
|
146
|
2005
|
5-6
|
15
|
2006
|
4-5
|
67
|
2007
|
4-5
|
117
|
2007
|
5-6
|
11
|
2008
|
4-5
|
105
|
2008
|
5-6
|
2
|
2008
|
6-7
|
1
|
2009
|
4-5
|
66
|
2009
|
5-6
|
3
|
2010
|
4-5
|
85
|
2010
|
5-6
|
5
|
2010
|
6-7
|
1
|
2011
|
4-5
|
282
|
2011
|
5-6
|
19
|
2011
|
7-8
|
1
|
2012
|
4-5
|
170
|
2012
|
5-6
|
4
|
2012
|
6-7
|
1
|
2013
|
4-5
|
82
|
2013
|
5-6
|
3
|
2014
|
4-5
|
94
|
2014
|
5-6
|
3
|
2015
|
4-5
|
78
|
2015
|
5-6
|
2
|
2016
|
4-5
|
59
|
2016
|
5-6
|
2
|
2017
|
4-5
|
152
|
2017
|
5-6
|
9
|
2017
|
6-7
|
2
|
2018
|
4-5
|
64
|
2018
|
5-6
|
2
|
2019
|
4-5
|
85
|
2019
|
5-6
|
5
|
2020
|
4-5
|
39
|
2020
|
5-6
|
2
|
2020
|
6-7
|
1
|
year %>% ggplot(aes(Year, n))+
geom_line(size=1, col="red")+
scale_x_continuous(breaks=seq(min(year$Year),max(year$Year), 10))+
ggtitle("Number of Earthquakes by Years") +
xlab("Year") + ylab("Number of Cases")+
labs(caption ="Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=14, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=12))+
geom_hline(yintercept=mean(year$n), linetype="twodash", color = "green", size=1)
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Number of earthquakes by magnitude categories
total<-df2 %>% group_by(Magnitude_Class) %>% tally()
formattable(total)
Magnitude_Class
|
n
|
4-5
|
5818
|
5-6
|
606
|
6-7
|
65
|
7-8
|
14
|
Density of earthquakes by years
df2 %>% ggplot(aes(Year, Magnitude, col=Magnitude_Class))+
geom_point(size=1)+
geom_jitter()+
facet_grid(Magnitude_Class~., scale="free")+
ggtitle("Density of Earthquakes of by Years")+
xlab("Year") + ylab("Magnitude")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=12, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=10))
## Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): font family not
## found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Number of Earthquakes by Categories
df2 %>% group_by(Year, Magnitude_Class) %>% tally() %>%
ggplot(aes(Year, n))+
geom_point(size=1, col="red")+
facet_wrap(~Magnitude_Class, ncol=2, scales="free")+
ggtitle("Number of Earthquake by Categories") +
xlab("Year") + ylab("Number of Cases")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=14, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=12))
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Total number of earthquakes by magnitude categories
year<-df2 %>% group_by(Magnitude_Class) %>% tally()
formattable (year)
Magnitude_Class
|
n
|
4-5
|
5818
|
5-6
|
606
|
6-7
|
65
|
7-8
|
14
|
Number of cases by months
#Ordering by months
month<-df2 %>% group_by(Month) %>% tally()
formattable (month)
Month
|
n
|
1
|
523
|
2
|
434
|
3
|
570
|
4
|
562
|
5
|
648
|
6
|
491
|
7
|
577
|
8
|
574
|
9
|
465
|
10
|
619
|
11
|
558
|
12
|
482
|
#Sorting number of cases from large to small by months
month<-month %>% select(Month, n) %>% arrange(desc(n))
formattable(month)
Month
|
n
|
5
|
648
|
10
|
619
|
7
|
577
|
8
|
574
|
3
|
570
|
4
|
562
|
11
|
558
|
1
|
523
|
6
|
491
|
12
|
482
|
9
|
465
|
2
|
434
|
month %>% ggplot(aes(Month, n))+
geom_line(size=1, col="brown")+
scale_x_continuous(breaks=seq(1, 12, 1))+
ggtitle("Number of Cases by Months") +
xlab("Month") + ylab("Number of Cases")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=14, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=12))+
geom_hline(yintercept=mean(month$n), linetype="twodash", color = "red", size=1)
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Number of earthquakes by categories and Months
m<-df2 %>% group_by(Month, Magnitude_Class) %>% tally()
formattable (m)
Month
|
Magnitude_Class
|
n
|
1
|
4-5
|
472
|
1
|
5-6
|
47
|
1
|
6-7
|
3
|
1
|
7-8
|
1
|
2
|
4-5
|
391
|
2
|
5-6
|
39
|
2
|
6-7
|
3
|
2
|
7-8
|
1
|
3
|
4-5
|
503
|
3
|
5-6
|
58
|
3
|
6-7
|
7
|
3
|
7-8
|
2
|
4
|
4-5
|
495
|
4
|
5-6
|
60
|
4
|
6-7
|
6
|
4
|
7-8
|
1
|
5
|
4-5
|
580
|
5
|
5-6
|
62
|
5
|
6-7
|
5
|
5
|
7-8
|
1
|
6
|
4-5
|
445
|
6
|
5-6
|
40
|
6
|
6-7
|
5
|
6
|
7-8
|
1
|
7
|
4-5
|
512
|
7
|
5-6
|
54
|
7
|
6-7
|
10
|
7
|
7-8
|
1
|
8
|
4-5
|
516
|
8
|
5-6
|
51
|
8
|
6-7
|
5
|
8
|
7-8
|
2
|
9
|
4-5
|
424
|
9
|
5-6
|
33
|
9
|
6-7
|
8
|
10
|
4-5
|
556
|
10
|
5-6
|
57
|
10
|
6-7
|
5
|
10
|
7-8
|
1
|
11
|
4-5
|
495
|
11
|
5-6
|
57
|
11
|
6-7
|
4
|
11
|
7-8
|
2
|
12
|
4-5
|
429
|
12
|
5-6
|
48
|
12
|
6-7
|
4
|
12
|
7-8
|
1
|
m %>% ggplot(aes(Month, n))+
geom_point(size=1, col="red")+
ggtitle("Number of Earthquakes by Categories and Months") +
scale_x_continuous(breaks=seq(1, 12, 1))+
xlab("Month") + ylab("Number of Cases")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=14, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=12))+
geom_text_repel(aes(label=n), size=3, data=m)+
theme(legend.position = "None")+
facet_grid(Magnitude_Class~.)
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Number of earthquakes by time of day
#Sorting by time of day
hour<-df2 %>% group_by(Hour) %>% tally()
formattable (hour)
Hour
|
n
|
0
|
347
|
1
|
271
|
2
|
296
|
3
|
272
|
4
|
277
|
5
|
279
|
6
|
246
|
7
|
263
|
8
|
253
|
9
|
268
|
10
|
265
|
11
|
273
|
12
|
242
|
13
|
242
|
14
|
265
|
15
|
257
|
16
|
274
|
17
|
277
|
18
|
274
|
19
|
263
|
20
|
281
|
21
|
276
|
22
|
288
|
23
|
254
|
#Sorting number of cases from large to small by time of day
hour<-hour %>% select(Hour, n)%>%
arrange(desc(n))
formattable(hour)
Hour
|
n
|
0
|
347
|
2
|
296
|
22
|
288
|
20
|
281
|
5
|
279
|
4
|
277
|
17
|
277
|
21
|
276
|
16
|
274
|
18
|
274
|
11
|
273
|
3
|
272
|
1
|
271
|
9
|
268
|
10
|
265
|
14
|
265
|
7
|
263
|
19
|
263
|
15
|
257
|
23
|
254
|
8
|
253
|
6
|
246
|
12
|
242
|
13
|
242
|
hour %>% ggplot(aes(Hour, n))+
geom_line(size=1, col="red")+
scale_x_continuous(breaks=seq(0, 24, 2))+
ggtitle("Number of Cases by Hour") +
xlab("Time") + ylab("Number of Cases")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=14, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=12))+
geom_hline(yintercept=mean(hour$n), linetype="twodash", color = "blue", size=1)
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Number of earthquakes by categories and Hour
h<-df2 %>% group_by(Hour, Magnitude_Class) %>% tally()
formattable (h)
Hour
|
Magnitude_Class
|
n
|
0
|
4-5
|
317
|
0
|
5-6
|
24
|
0
|
6-7
|
5
|
0
|
7-8
|
1
|
1
|
4-5
|
246
|
1
|
5-6
|
23
|
1
|
6-7
|
1
|
1
|
7-8
|
1
|
2
|
4-5
|
273
|
2
|
5-6
|
19
|
2
|
6-7
|
3
|
2
|
7-8
|
1
|
3
|
4-5
|
237
|
3
|
5-6
|
31
|
3
|
6-7
|
2
|
3
|
7-8
|
2
|
4
|
4-5
|
259
|
4
|
5-6
|
17
|
4
|
6-7
|
1
|
5
|
4-5
|
248
|
5
|
5-6
|
29
|
5
|
6-7
|
2
|
6
|
4-5
|
217
|
6
|
5-6
|
25
|
6
|
6-7
|
2
|
6
|
7-8
|
2
|
7
|
4-5
|
225
|
7
|
5-6
|
34
|
7
|
6-7
|
4
|
8
|
4-5
|
233
|
8
|
5-6
|
18
|
8
|
6-7
|
2
|
9
|
4-5
|
238
|
9
|
5-6
|
28
|
9
|
6-7
|
2
|
10
|
4-5
|
235
|
10
|
5-6
|
27
|
10
|
6-7
|
2
|
10
|
7-8
|
1
|
11
|
4-5
|
243
|
11
|
5-6
|
28
|
11
|
6-7
|
2
|
12
|
4-5
|
210
|
12
|
5-6
|
26
|
12
|
6-7
|
6
|
13
|
4-5
|
212
|
13
|
5-6
|
29
|
13
|
6-7
|
1
|
14
|
4-5
|
239
|
14
|
5-6
|
21
|
14
|
6-7
|
5
|
15
|
4-5
|
230
|
15
|
5-6
|
24
|
15
|
6-7
|
3
|
16
|
4-5
|
249
|
16
|
5-6
|
20
|
16
|
6-7
|
4
|
16
|
7-8
|
1
|
17
|
4-5
|
244
|
17
|
5-6
|
30
|
17
|
6-7
|
3
|
18
|
4-5
|
250
|
18
|
5-6
|
22
|
18
|
6-7
|
2
|
19
|
4-5
|
233
|
19
|
5-6
|
26
|
19
|
6-7
|
2
|
19
|
7-8
|
2
|
20
|
4-5
|
245
|
20
|
5-6
|
32
|
20
|
6-7
|
4
|
21
|
4-5
|
245
|
21
|
5-6
|
28
|
21
|
6-7
|
2
|
21
|
7-8
|
1
|
22
|
4-5
|
263
|
22
|
5-6
|
22
|
22
|
6-7
|
2
|
22
|
7-8
|
1
|
23
|
4-5
|
227
|
23
|
5-6
|
23
|
23
|
6-7
|
3
|
23
|
7-8
|
1
|
h %>% ggplot(aes(Hour, n))+
geom_point(size=1, col="red")+
facet_wrap(~Magnitude_Class, ncol=2, scales="free")+
ggtitle("Number of Earthquakes by Categories") +
xlab("Time") + ylab("Number of Cases")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(family = "Trebuchet MS", face="bold", size=14, hjust=0.5)) +
theme(axis.title = element_text(family = "Trebuchet MS", face="bold", size=12))
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## font family not found in Windows font database
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, : font
## family not found in Windows font database

Map of earthquakes with magnitudes between 6.0 and 7.0 in Turkey
y<- df2 %>% filter(`Magnitude_Class` == "6-7")
leaflet() %>% addTiles() %>%
addCircles(data=y, radius = y$Magnitude, color = '#ff0000', fillOpacity = 4, weight=5)
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Map of earthquakes with magnitudes between 7.0 and 8.0 in Turkey
y <- df2 %>% filter(`Magnitude_Class` == "7-8")
leaflet() %>% addTiles() %>%
addCircles(data=y, radius = y$Magnitude, color = "blue", fillOpacity = 0.9, weight=6)
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Map of earthquakes with magnitudes between 5.0 and 6.0 in Turkey
y<- df2 %>% filter(`Magnitude_Class` == "5-6")
leaflet() %>% addTiles() %>%
addCircles(data=y, radius = y$Magnitude, color = "green", fillOpacity = 0.5, weight=5)
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Map of earthquakes with magnitudes between 4.0 and 5.0 in Turkey
y <- df2 %>% filter(`Magnitude_Class` == "4-5")
leaflet() %>% addTiles() %>%
addCircles(data=y, radius = y$Magnitude, color = "purple", fillOpacity = 0.1, weight = 1)
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Manisa earthquakes by magnitude
manisa<-df2 %>% filter(str_detect(Place, "Manisa"))
year<-manisa %>% group_by(Year, Month, Day, Hour, Minute, Magnitude, Depth) %>%
tally()
formattable (year[,-8])
Year
|
Month
|
Day
|
Hour
|
Minute
|
Magnitude
|
Depth
|
1905
|
4
|
30
|
16
|
1
|
6.1
|
10
|
1942
|
10
|
28
|
2
|
22
|
6.0
|
50
|
1969
|
3
|
28
|
1
|
48
|
6.5
|
4
|
year %>% ggplot(aes(Year, Magnitude))+
geom_point(size=2, col="red")+
ggtitle("Manisa Earthquakes by Magnitude") +
scale_x_continuous(breaks=seq(min(year$Year),max(year$Year), 7))+
xlab("Year") + ylab("Magnitude")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(face="bold", size=14, hjust=0.5))+
theme(axis.title = element_text(face="bold",size=12))+
geom_text_repel(aes(label=paste("Magnitude:",Magnitude,",","Date:",Year,"/", Month,"/", Day,",", "Time:", Hour,":",Minute)), size=3, direction="y",fontface = 'bold', box.padding = unit(0.5, 'lines'), point.padding = unit(1.6, 'lines'), arrow = arrow(length = unit(0.03,'npc')), segment.color="brown",segment.size = 0.5, hjust=0.5, data=year)+
theme(legend.position = "None")+
theme(plot.caption = element_text(color = "blue", face="italic", hjust=0.5))

Map of Manisa earthquakes
leaflet() %>%
addTiles() %>%
addMarkers(data=manisa,label=manisa$Magnitude,
labelOptions = labelOptions(noHide =T))
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Erzincan earthquakes by magnitude
erzincan<-df2 %>% filter(str_detect(Place, "Erzican"))
year<-erzincan %>% group_by(Year, Month, Day, Hour, Minute, Magnitude, Depth) %>%
tally()
formattable (year[,-8])
Year
|
Month
|
Day
|
Hour
|
Minute
|
Magnitude
|
Depth
|
1939
|
12
|
26
|
23
|
57
|
7.9
|
20.0
|
1949
|
8
|
17
|
18
|
44
|
6.7
|
40.0
|
1992
|
3
|
13
|
17
|
18
|
6.6
|
22.2
|
year %>% ggplot(aes(Year, Magnitude))+
geom_point(size=2, col="red")+
ggtitle("Erzincan Earthquakes by Magnitude") +
scale_x_continuous(breaks=seq(min(year$Year),max(year$Year), 4))+
xlab("Year") + ylab("Magnitude")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(face="bold", size=14, hjust=0.5))+
theme(axis.title = element_text(face="bold",size=12))+
geom_text_repel(aes(label=paste("Magnitude:",Magnitude,",","Date:",Year,"/", Month,"/", Day,",", "Time:", Hour,":",Minute)), size=3, direction="y",fontface = 'bold', box.padding = unit(0.5, 'lines'), point.padding = unit(1.6, 'lines'), arrow = arrow(length = unit(0.03,'npc')), segment.color="brown",segment.size = 0.5, hjust=0.5, data=year)+
theme(legend.position = "None")+
theme(plot.caption = element_text(color = "blue", face="italic", hjust=0.5))

Map of Erzincan earthquakes
leaflet() %>%
addTiles() %>%
addMarkers(data=erzincan,
label=erzincan$Magnitude,
labelOptions = labelOptions(noHide = T))
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Van earthquakes by magnitude
van<-df2 %>% filter(str_detect(Place, "Van"))
year<-van %>% group_by(Year, Month, Day, Hour, Minute, Magnitude, Depth) %>%
tally()
formattable (year[,-8])
Year
|
Month
|
Day
|
Hour
|
Minute
|
Magnitude
|
Depth
|
1976
|
11
|
24
|
12
|
22
|
7.0
|
8.60
|
2011
|
10
|
23
|
10
|
41
|
7.1
|
19.02
|
2011
|
10
|
23
|
20
|
45
|
6.0
|
6.79
|
year %>% ggplot(aes(Year, Magnitude))+
geom_point(size=2, col="red")+
ggtitle("Van Earthquakes by Magnitude") +
scale_x_continuous(breaks=seq(min(year$Year),max(year$Year), 5))+
xlab("Year") + ylab("Magnitude")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(face="bold", size=14, hjust=0.5))+
theme(axis.title = element_text(face="bold",size=12))+
geom_text_repel(aes(label=paste("Magnitude:",Magnitude,",","Date:",Year,"/", Month,"/", Day,",", "Time:", Hour,":",Minute)), size=3, direction="y",fontface = 'bold', box.padding = unit(0.5, 'lines'), point.padding = unit(1.6, 'lines'), arrow = arrow(length = unit(0.03,'npc')), segment.color="brown",segment.size = 0.5, hjust=0.5, data=year)+
theme(legend.position = "None")+
theme(plot.caption = element_text(color = "blue", face="italic", hjust=0.5))

Map of Van earthquakes
leaflet() %>%
addTiles() %>%
addMarkers(data=van,
label=van$Magnitude,
labelOptions = labelOptions(noHide = T))
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Malatya earthquakes by magnitude
malatya<-df2 %>% filter(str_detect(Place, "Malatya"))
year<-malatya %>% group_by(Year, Month, Day, Hour, Minute, Magnitude, Depth) %>%
tally()
formattable (year[,-8])
Year
|
Month
|
Day
|
Hour
|
Minute
|
Magnitude
|
Depth
|
1905
|
12
|
4
|
7
|
4
|
6.8
|
10
|
1908
|
9
|
28
|
6
|
27
|
6.1
|
10
|
year %>% ggplot(aes(Year, Magnitude))+
geom_point(size=2, col="red")+
ggtitle("Malatya Earthquakes by Magnitude") +
scale_x_continuous(breaks=seq(min(year$Year),max(year$Year), 1))+
xlab("Year") + ylab("Magnitude")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(face="bold", size=14, hjust=0.5))+
theme(axis.title = element_text(face="bold",size=12))+
geom_text_repel(aes(label=paste("Magnitude:",Magnitude,",","Date:",Year,"/", Month,"/", Day,",", "Time:", Hour,":",Minute)), size=3, direction="y",fontface = 'bold', box.padding = unit(0.5, 'lines'), point.padding = unit(1.6, 'lines'), arrow = arrow(length = unit(0.03,'npc')), segment.color="brown",segment.size = 0.5, hjust=0.5, data=year)+
theme(legend.position = "None")+
theme(plot.caption = element_text(color = "blue", face="italic", hjust=0.5))

Map of Malatya earthquakes
leaflet() %>%
addTiles() %>%
addMarkers(data=malatya,
label=malatya$Magnitude,
labelOptions = labelOptions(noHide = T))
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Kocaeli earthquakes by magnitude
kocaeli<-df2 %>% filter(str_detect(Place, "Kocaeli"))
year<-kocaeli %>% group_by(Year, Month, Day, Hour, Minute, Magnitude, Depth) %>%
tally()
formattable (year[,-8])
Year
|
Month
|
Day
|
Hour
|
Minute
|
Magnitude
|
Depth
|
1999
|
8
|
17
|
0
|
1
|
7.6
|
15
|
Map of Kocaeli earthquakes
leaflet() %>%
addTiles() %>%
addMarkers(data=kocaeli,
label=paste("Magnitude:",kocaeli$Magnitude,",","Date:",kocaeli$Year,"/", kocaeli$Month,"/", kocaeli$Day,",", "Time:",kocaeli$Hour,":", kocaeli$Minute),
labelOptions = labelOptions(noHide = T, direction = 'bottom'))
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Muş earthquakes by magnitude
mus<-df2 %>% filter(str_detect(Place, "Malazgirit-Mu?|Varto-Mu?"))
year<-mus %>% group_by(Year, Month, Day, Hour, Minute, Magnitude, Depth) %>%
tally()
formattable (year[,-8])
Year
|
Month
|
Day
|
Hour
|
Minute
|
Magnitude
|
Depth
|
1903
|
4
|
28
|
23
|
46
|
6.3
|
30
|
1966
|
8
|
19
|
12
|
22
|
6.9
|
26
|
year %>% ggplot(aes(Year, Magnitude))+
geom_point(size=2, col="red")+
ggtitle("Muş Earthquakes by Magnitude") +
scale_x_continuous(breaks=seq(min(year$Year),max(year$Year), 12))+
xlab("Year") + ylab("Magnitude")+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority
Presidential of Earthquake Department)")+
theme(plot.title = element_text(face="bold", size=14, hjust=0.5))+
theme(axis.title = element_text(face="bold",size=12))+
geom_text_repel(aes(label=paste("Magnitude:",Magnitude,",","Date:",Year,"/", Month,"/", Day,",", "Time:", Hour,":",Minute)), size=3, direction="y",fontface = 'bold', box.padding = unit(0.5, 'lines'), point.padding = unit(1.6, 'lines'), arrow = arrow(length = unit(0.03,'npc')), segment.color="brown",segment.size = 0.5, hjust=0.5, data=year)+
theme(legend.position = "None")+
theme(plot.caption = element_text(color = "blue", face="italic", hjust=0.5))

Map of Muş earthquakes
leaflet() %>%
addTiles() %>%
addCircleMarkers(data=mus,
label=paste("Magnitude:",mus$Magnitude,",","Date:",mus$Year,"/",
mus$Month,"/",mus$Day,",", "Time:", mus$Hour,":",mus$Minute),
labelOptions = labelOptions(noHide = T, direction = 'bottom'))
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively
Depths of Turkey Earthquakes from 1900 to 2020 by Magnitude Category
df2 %>% ggplot(aes(x = Depth, y = Magnitude_Class, fill = stat(x))) +
geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01, gradient_lwd = 1.) +
scale_fill_viridis_c(name = "Depth", option = "B") +
labs(title = 'Depths of Turkey Earthquakes',
subtitle = 'Depths of Turkey Earthquakes from 1900 to 2020 by Magnitude Category') +
theme_ridges(font_size = 11, grid = TRUE) +
theme(axis.title.y = element_blank())+
labs(caption = "Data Source:AFAD (Disaster & Emergency Management Authority Presidential of Earthquake Department)")+
theme(plot.caption = element_text(color = "blue", face="italic", hjust=0.5))
## Picking joint bandwidth of 4.61

Kolmogorov-Smirnov Normality test
#Kolmogorov-Smirnov test is used in place of Shapiro-Wilk’s one because sample size exceeds 5000.
ks.test(df2$Magnitude, df2$Depth)
## Warning in ks.test(df2$Magnitude, df2$Depth): p-value will be approximate in the
## presence of ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: df2$Magnitude and df2$Depth
## D = 0.8899, p-value < 2.2e-16
## alternative hypothesis: two-sided
Correlation between depth of earthquakes and magnitude of earthquakes
ggscatter(df2, x = "Magnitude", y = "Depth",
add = "reg.line", conf.int = TRUE,
cor.coef = TRUE, cor.method = "pearson",
xlab = "Magnitude", ylab = "Depth", main="Correlation between depth of earthquakes and magnitude of earthquakes")

Correlation Analysis
#There is no strong correlation between depth of earthquakes and magnitude of earthquakes.
cor.test(df2$Magnitude, df2$Depth,
method = "pearson")
##
## Pearson's product-moment correlation
##
## data: df2$Magnitude and df2$Depth
## t = 8.0523, df = 6501, p-value = 9.59e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.07525035 0.12338173
## sample estimates:
## cor
## 0.09937416
Conclusion
In this study, it is aimed to be conducted exploratory data analysis of Turkey earthquages using data mining techniques. From descriptive statistics, it is understood that earthquakes often show up at night and in the evening. It is observed that the eartquages with magnitudes ranging from 4.0 to 8.0 are more intense in ones between 10th and 12th months relative to other months.
The findings show that there is no strong correlation between depth of earthquages and magnitude of earthquages. Factors such as soil and rock structure may have affected this relationship. In addition, these factors need to be evaluated.
Hope to create awareness..
I attribute this study to people who died and were injured in the earthquake.