Title: Ensemble Pruning via Individual Contribution Ordering
Authors: Lu et al.
Year: 2010
Conference: KDD
DOI: https://dl.acm.org/doi/abs/10.1145/1835804.1835914
Proof
The expected diversity contribution of a classifier \(\small c_i\) \[\small E(ConDiv_i) = \frac {(N_{ma}^{(i)}AVG_{mi} + N_{mi}^{(i)}AVG_{ma})}{N}\] \[\scriptsize N_{ma}^{(i)} \text{: total number of data points that $\scriptsize c_i$ votes in the majority groups} \] \[\scriptsize AVG_{ma} \text{: average the number of votes in the majority groups} \]
For classifier \(\small c_i\) and \(\small c_j\), difference between their expected diversity contributions \[\small \frac {(N_{ma}^{(i)} -N_{ma}^{(j)})AVG_{mi} + (N_{mi}^{(i)}-N_{mi}^{(j)})AVG_{ma}}{N}\]
Four cases
| Case | classifier \(\small i\) | ensemble | group of classifier \(\small i\) |
|---|---|---|---|
| \(\small a_i\) | correct | incorrect | minor |
| \(\small b_i\) | correct | correct | major |
| \(\small u_i\) | incorrect | correct | minor |
| \(\small t_i\) | incorrect | incorrect | major |
Rules for evaluating contributions of predictions
Negative contribution \[\small IC_i^{(j)} = v_{correct}^{(j)} - v_{c_i(\mathbf{x}_j)}^{(j)} - v_{max}^{(j)}\]
Individual Contribution of a classifier \(\small c_i\) \[\small IC_i = \sum_{j=1}^N IC_i^{(j)} \]
Algorithm (EPIC: Ensemble Pruning via Individual Contribution ordering)