1. First I chose one of the website variables (Twitter), and turned it into a factor.
pew %>%
  mutate(web1a = as_factor(web1a))
  1. Next, I recoded the factor in order to provide verbal labels. I also ran a table to create an organized display of the numbers.
pew <- pew %>%
  mutate(Twitter = fct_recode(web1a,
                              "Yes" = "1",
                              "No" = "2",
                              NULL = "8",
                              NULL = "9"))

pew %>% 
  count(web1a)
NA
NA
  1. The next step was to make education levels into a factor.
pew %>% 
  mutate(educ2 = as.factor(educ2))

4.Once education level had become a factor, I recoded it so the levels would have the appropriate labels. Just as for the last factor, I ran a table for an organized few of the data.

pew <- pew %>%
  mutate(education_level = fct_recode(educ2 ,
                              "Less Than HS" = "1",
                              "Some HS" = "2",
                              "HS graduate" = "3" ,
                              "Some College" = "4" ,
                              "Associates Degree" = "5" ,
                              "College Degree" = "6" ,
                              "Some Grad School" = "7",
                              "Grad Degree" = "8",
                              "Don't Know" = "98" ,
                              "Refused" = "99"))

pew %>% 
  count(educ2)
NA
  1. Now that each factor has an individual table, I put the factors together to create a larger, more extensive table.
pew %>% 
  count(Twitter, education_level)
  1. A graph provides a better visual presentation than just lookinh at the raw data, so I ran a graph in order for a clear, visual view of the data.
pew %>% 
  drop_na(internet_use) %>% 
  ggplot(aes(x = education_level, fill = Twitter)) +
  geom_bar() +
  coord_flip()

  1. Next, I collapsed the education levels into two categories, instead of 8. This will create a more basic and clear form of the table, but will not be as detailed.
pew <- pew %>% 
  mutate(education_level_simple = fct_collapse(education_level,
                                             college_degree = c("Associates Degree",
                                                                "College Degree" ,
                                                                "Some Grad School" ,
                                                                "Grad Degree" ),
                                            no_degree = c("Some College", 
                                                            "HS graduate",
                                                                "Some HS" ,
                                                                "Less Than HS" ,
                                                          "Refused" ,
                                                          "Don't Know")))

pew %>% 
  count(education_level_simple)
NA
  1. Finally, I used the above data in order to make a cleaner, simpler virsion of the data.
pew %>% 
  drop_na(education_level) %>% 
  ggplot(aes(x = education_level_simple, fill = Twitter)) +
  geom_bar() +
  coord_flip()

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCgoxLiBGaXJzdCBJIGNob3NlIG9uZSBvZiB0aGUgd2Vic2l0ZSB2YXJpYWJsZXMgKFR3aXR0ZXIpLCBhbmQgdHVybmVkIGl0IGludG8gYSBmYWN0b3IuCgpgYGB7cn0KcGV3ICU+JQogIG11dGF0ZSh3ZWIxYSA9IGFzX2ZhY3Rvcih3ZWIxYSkpCmBgYAoKCgoyLiBOZXh0LCBJIHJlY29kZWQgdGhlIGZhY3RvciBpbiBvcmRlciB0byBwcm92aWRlIHZlcmJhbCBsYWJlbHMuIEkgYWxzbyByYW4gYSB0YWJsZSB0byBjcmVhdGUgYW4gb3JnYW5pemVkIGRpc3BsYXkgb2YgdGhlIG51bWJlcnMuCgoKYGBge3J9CnBldyA8LSBwZXcgJT4lCiAgbXV0YXRlKFR3aXR0ZXIgPSBmY3RfcmVjb2RlKHdlYjFhLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiWWVzIiA9ICIxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5vIiA9ICIyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTlVMTCA9ICI4IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTlVMTCA9ICI5IikpCgpwZXcgJT4lIAogIGNvdW50KHdlYjFhKQoKCmBgYAoKCjMuIFRoZSBuZXh0IHN0ZXAgd2FzIHRvIG1ha2UgZWR1Y2F0aW9uIGxldmVscyBpbnRvIGEgZmFjdG9yLgoKCmBgYHtyfQpwZXcgJT4lIAogIG11dGF0ZShlZHVjMiA9IGFzLmZhY3RvcihlZHVjMikpCmBgYAoKNC5PbmNlIGVkdWNhdGlvbiBsZXZlbCBoYWQgYmVjb21lIGEgZmFjdG9yLCBJIHJlY29kZWQgaXQgc28gdGhlIGxldmVscyB3b3VsZCBoYXZlIHRoZSBhcHByb3ByaWF0ZSBsYWJlbHMuIEp1c3QgYXMgZm9yIHRoZSBsYXN0IGZhY3RvciwgSSByYW4gYSB0YWJsZSBmb3IgYW4gb3JnYW5pemVkIGZldyBvZiB0aGUgZGF0YS4KCgpgYGB7cn0KcGV3IDwtIHBldyAlPiUKICBtdXRhdGUoZWR1Y2F0aW9uX2xldmVsID0gZmN0X3JlY29kZShlZHVjMiAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJMZXNzIFRoYW4gSFMiID0gIjEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBIUyIgPSAiMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJIUyBncmFkdWF0ZSIgPSAiMyIgLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBDb2xsZWdlIiA9ICI0IiAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJBc3NvY2lhdGVzIERlZ3JlZSIgPSAiNSIgLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ29sbGVnZSBEZWdyZWUiID0gIjYiICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgR3JhZCBTY2hvb2wiID0gIjciLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiR3JhZCBEZWdyZWUiID0gIjgiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiRG9uJ3QgS25vdyIgPSAiOTgiICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlJlZnVzZWQiID0gIjk5IikpCgpwZXcgJT4lIAogIGNvdW50KGVkdWMyKQoKYGBgCgoKNS4gTm93IHRoYXQgZWFjaCBmYWN0b3IgaGFzIGFuIGluZGl2aWR1YWwgdGFibGUsIEkgcHV0IHRoZSBmYWN0b3JzIHRvZ2V0aGVyIHRvIGNyZWF0ZSBhIGxhcmdlciwgbW9yZSBleHRlbnNpdmUgdGFibGUuCgpgYGB7cn0KcGV3ICU+JSAKICBjb3VudChUd2l0dGVyLCBlZHVjYXRpb25fbGV2ZWwpCmBgYAoKCgo2LiBBIGdyYXBoIHByb3ZpZGVzIGEgYmV0dGVyIHZpc3VhbCBwcmVzZW50YXRpb24gdGhhbiBqdXN0IGxvb2tpbmggYXQgdGhlIHJhdyBkYXRhLCBzbyBJIHJhbiBhIGdyYXBoIGluIG9yZGVyIGZvciBhIGNsZWFyLCB2aXN1YWwgdmlldyBvZiB0aGUgZGF0YS4KCmBgYHtyfQpwZXcgJT4lIAogIGRyb3BfbmEoaW50ZXJuZXRfdXNlKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZWR1Y2F0aW9uX2xldmVsLCBmaWxsID0gVHdpdHRlcikpICsKICBnZW9tX2JhcigpICsKICBjb29yZF9mbGlwKCkKYGBgCgo3LiBOZXh0LCBJIGNvbGxhcHNlZCB0aGUgZWR1Y2F0aW9uIGxldmVscyBpbnRvIHR3byBjYXRlZ29yaWVzLCBpbnN0ZWFkIG9mIDguICBUaGlzIHdpbGwgY3JlYXRlIGEgbW9yZSBiYXNpYyBhbmQgY2xlYXIgZm9ybSBvZiB0aGUgdGFibGUsIGJ1dCB3aWxsIG5vdCBiZSBhcyBkZXRhaWxlZC4KCmBgYHtyfQpwZXcgPC0gcGV3ICU+JSAKICBtdXRhdGUoZWR1Y2F0aW9uX2xldmVsX3NpbXBsZSA9IGZjdF9jb2xsYXBzZShlZHVjYXRpb25fbGV2ZWwsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbGxlZ2VfZGVncmVlID0gYygiQXNzb2NpYXRlcyBEZWdyZWUiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkNvbGxlZ2UgRGVncmVlIiAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBHcmFkIFNjaG9vbCIgLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkdyYWQgRGVncmVlIiApLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vX2RlZ3JlZSA9IGMoIlNvbWUgQ29sbGVnZSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiSFMgZ3JhZHVhdGUiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgSFMiICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJMZXNzIFRoYW4gSFMiICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJSZWZ1c2VkIiAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiRG9uJ3QgS25vdyIpKSkKCnBldyAlPiUgCiAgY291bnQoZWR1Y2F0aW9uX2xldmVsX3NpbXBsZSkKCmBgYAoKOC4gRmluYWxseSwgSSB1c2VkIHRoZSBhYm92ZSBkYXRhIGluIG9yZGVyIHRvIG1ha2UgYSBjbGVhbmVyLCBzaW1wbGVyIHZpcnNpb24gb2YgdGhlIGRhdGEuCiAKYGBge3J9CnBldyAlPiUgCiAgZHJvcF9uYShlZHVjYXRpb25fbGV2ZWwpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBlZHVjYXRpb25fbGV2ZWxfc2ltcGxlLCBmaWxsID0gVHdpdHRlcikpICsKICBnZW9tX2JhcigpICsKICBjb29yZF9mbGlwKCkKYGBgCgoKCgoK