1. First I chose one of the website variables (Twitter), and turned it into a factor.
pew <- pew %>%
  mutate(web1a = as.factor(web1a))
  1. Next, I recoded the factor in order to provide verbal labels. I also ran a table to create an organized display of the numbers
pew <- pew %>%
  mutate(Twitter = fct_recode(web1a,
                              "Yes" = "1",
                              "No" = "2",
                              NULL = "8",
                              NULL = "9"))

pew %>% 
  count(web1a)
NA
NA
  1. The next step was to make education levels into a factor.
pew <- pew %>% 
  mutate(educ2 = as.factor(educ2))

4.Once education level had become a factor, I recoded it so the levels would have the appropriate labels. Just as for the last factor, I ran a table for an organized few of the data.

pew <- pew %>%
  mutate(education_level = fct_recode(educ2 ,
                              "Less Than HS" = "1",
                              "Some HS" = "2",
                              "HS graduate" = "3" ,
                              "Some College" = "4" ,
                              "Associates Degree" = "5" ,
                              "College Degree" = "6" ,
                              "Some Grad School" = "7",
                              "Grad Degree" = "8",
                              "Don't Know" = "98" ,
                              "Refused" = "99"))

pew %>% 
  count(educ2)
NA
  1. Now that each factor has an individual table, I put the factors together to create a larger, more extensive table.
pew %>% 
  count(Twitter, education_level)
  1. A graph provides a better visual presentation than just lookinh at the raw data, so I ran a graph in order for a clear, visual view of the data.
pew %>% 
  drop_na(internet_use) %>% 
  ggplot(aes(x = education_level, fill = Twitter)) +
  geom_bar() +
  coord_flip()

  1. Next, I collapsed the education levels into two categories, instead of 8. This will create a more basic and clear form of the table, but will not be as detailed.
pew <- pew %>% 
  mutate(education_level_simple = fct_collapse(education_level,
                                             college_degree = c("Associates Degree",
                                                                "College Degree" ,
                                                                "Some Grad School" ,
                                                                "Grad Degree" ),
                                            no_degree = c("Some College", 
                                                            "HS graduate",
                                                                "Some HS" ,
                                                                "Less Than HS" ,
                                                          "Don't Know" ,
                                                          "Refused")))

pew %>% 
  count(education_level_simple)
NA
  1. Finally, I used the above data in order to make a cleaner, simpler virsion of the data.
pew %>% 
  drop_na(education_level) %>% 
  ggplot(aes(x = education_level_simple, fill = Twitter)) +
  geom_bar() +
  coord_flip()

LS0tCnRpdGxlOiAiUGV3IFN1cnZleSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKMS4gRmlyc3QgSSBjaG9zZSBvbmUgb2YgdGhlIHdlYnNpdGUgdmFyaWFibGVzIChUd2l0dGVyKSwgYW5kIHR1cm5lZCBpdCBpbnRvIGEgZmFjdG9yLgpgYGB7cn0KcGV3IDwtIHBldyAlPiUKICBtdXRhdGUod2ViMWEgPSBhcy5mYWN0b3Iod2ViMWEpKQpgYGAKCjIuIE5leHQsIEkgcmVjb2RlZCB0aGUgZmFjdG9yIGluIG9yZGVyIHRvIHByb3ZpZGUgdmVyYmFsIGxhYmVscy4gSSBhbHNvIHJhbiBhIHRhYmxlIHRvIGNyZWF0ZSBhbiBvcmdhbml6ZWQgZGlzcGxheSBvZiB0aGUgbnVtYmVycyAKYGBge3J9CnBldyA8LSBwZXcgJT4lCiAgbXV0YXRlKFR3aXR0ZXIgPSBmY3RfcmVjb2RlKHdlYjFhLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiWWVzIiA9ICIxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5vIiA9ICIyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTlVMTCA9ICI4IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTlVMTCA9ICI5IikpCgpwZXcgJT4lIAogIGNvdW50KHdlYjFhKQoKCmBgYAoKCjMuIFRoZSBuZXh0IHN0ZXAgd2FzIHRvIG1ha2UgZWR1Y2F0aW9uIGxldmVscyBpbnRvIGEgZmFjdG9yLgpgYGB7cn0KcGV3IDwtIHBldyAlPiUgCiAgbXV0YXRlKGVkdWMyID0gYXMuZmFjdG9yKGVkdWMyKSkKYGBgCgo0Lk9uY2UgZWR1Y2F0aW9uIGxldmVsIGhhZCBiZWNvbWUgYSBmYWN0b3IsIEkgcmVjb2RlZCBpdCBzbyB0aGUgbGV2ZWxzIHdvdWxkIGhhdmUgdGhlIGFwcHJvcHJpYXRlIGxhYmVscy4gSnVzdCBhcyBmb3IgdGhlIGxhc3QgZmFjdG9yLCBJIHJhbiBhIHRhYmxlIGZvciBhbiBvcmdhbml6ZWQgZmV3IG9mIHRoZSBkYXRhLgpgYGB7cn0KcGV3IDwtIHBldyAlPiUKICBtdXRhdGUoZWR1Y2F0aW9uX2xldmVsID0gZmN0X3JlY29kZShlZHVjMiAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJMZXNzIFRoYW4gSFMiID0gIjEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBIUyIgPSAiMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJIUyBncmFkdWF0ZSIgPSAiMyIgLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBDb2xsZWdlIiA9ICI0IiAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJBc3NvY2lhdGVzIERlZ3JlZSIgPSAiNSIgLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ29sbGVnZSBEZWdyZWUiID0gIjYiICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgR3JhZCBTY2hvb2wiID0gIjciLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiR3JhZCBEZWdyZWUiID0gIjgiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiRG9uJ3QgS25vdyIgPSAiOTgiICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlJlZnVzZWQiID0gIjk5IikpCgpwZXcgJT4lIAogIGNvdW50KGVkdWMyKQoKYGBgCgoKNS4gTm93IHRoYXQgZWFjaCBmYWN0b3IgaGFzIGFuIGluZGl2aWR1YWwgdGFibGUsIEkgcHV0IHRoZSBmYWN0b3JzIHRvZ2V0aGVyIHRvIGNyZWF0ZSBhIGxhcmdlciwgbW9yZSBleHRlbnNpdmUgdGFibGUuCgpgYGB7cn0KcGV3ICU+JSAKICBjb3VudChUd2l0dGVyLCBlZHVjYXRpb25fbGV2ZWwpCmBgYAoKCgo2LiBBIGdyYXBoIHByb3ZpZGVzIGEgYmV0dGVyIHZpc3VhbCBwcmVzZW50YXRpb24gdGhhbiBqdXN0IGxvb2tpbmggYXQgdGhlIHJhdyBkYXRhLCBzbyBJIHJhbiBhIGdyYXBoIGluIG9yZGVyIGZvciBhIGNsZWFyLCB2aXN1YWwgdmlldyBvZiB0aGUgZGF0YS4KCmBgYHtyfQpwZXcgJT4lIAogIGRyb3BfbmEoaW50ZXJuZXRfdXNlKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZWR1Y2F0aW9uX2xldmVsLCBmaWxsID0gVHdpdHRlcikpICsKICBnZW9tX2JhcigpICsKICBjb29yZF9mbGlwKCkKYGBgCgoKCjcuIE5leHQsIEkgY29sbGFwc2VkIHRoZSBlZHVjYXRpb24gbGV2ZWxzIGludG8gdHdvIGNhdGVnb3JpZXMsIGluc3RlYWQgb2YgOC4gIFRoaXMgd2lsbCBjcmVhdGUgYSBtb3JlIGJhc2ljIGFuZCBjbGVhciBmb3JtIG9mIHRoZSB0YWJsZSwgYnV0IHdpbGwgbm90IGJlIGFzIGRldGFpbGVkLgoKYGBge3J9CnBldyA8LSBwZXcgJT4lIAogIG11dGF0ZShlZHVjYXRpb25fbGV2ZWxfc2ltcGxlID0gZmN0X2NvbGxhcHNlKGVkdWNhdGlvbl9sZXZlbCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sbGVnZV9kZWdyZWUgPSBjKCJBc3NvY2lhdGVzIERlZ3JlZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ29sbGVnZSBEZWdyZWUiICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJTb21lIEdyYWQgU2Nob29sIiAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiR3JhZCBEZWdyZWUiICksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbm9fZGVncmVlID0gYygiU29tZSBDb2xsZWdlIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJIUyBncmFkdWF0ZSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBIUyIgLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkxlc3MgVGhhbiBIUyIgLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkRvbid0IEtub3ciICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJSZWZ1c2VkIikpKQoKcGV3ICU+JSAKICBjb3VudChlZHVjYXRpb25fbGV2ZWxfc2ltcGxlKQoKYGBgCgo4LiBGaW5hbGx5LCBJIHVzZWQgdGhlIGFib3ZlIGRhdGEgaW4gb3JkZXIgdG8gbWFrZSBhIGNsZWFuZXIsIHNpbXBsZXIgdmlyc2lvbiBvZiB0aGUgZGF0YS4KCmBgYHtyfQpwZXcgJT4lIAogIGRyb3BfbmEoZWR1Y2F0aW9uX2xldmVsKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZWR1Y2F0aW9uX2xldmVsX3NpbXBsZSwgZmlsbCA9IFR3aXR0ZXIpKSArCiAgZ2VvbV9iYXIoKSArCiAgY29vcmRfZmxpcCgpCmBgYAoKCgoKCgo=