This is an R Markdown— title: “APratt Pew Assignment” output: html_document —

R Markdown

This is an R Markdown document.

library(tidyverse)
pew <- read_csv("January 3-10, 2018 - Core Trends Survey/January 3-10, 2018 - Core Trends Survey - CSV.csv")
Parsed with column specification:
cols(
  .default = col_double(),
  usr = col_character(),
  `pial11ao@` = col_character()
)
See spec(...) for full column specifications.
pew <- pew %>% 
  mutate(web1e = as.factor(web1e)) %>% 
  mutate(youtube_use = fct_recode(web1e, "Yes" = "1", "No" = "2", NULL = "8", NULL = "9")) 

pew %>% 
  drop_na(youtube_use) %>% 
  count(youtube_use)

Perhaps unsurprisingly, more people answered “Yes” to using YouTube than “No.” Cat vids, man.

pew <- pew %>% 
  mutate(educ2 = as.factor(educ2)) %>% 
  mutate(education_level = fct_recode(educ2, 
                                      "Less than HS" = "1", 
                                      "Some HS" = "2", 
                                      "HS graduate" = "3", 
                                      "Some college" = "4", 
                                      "Associate degree" = "5", 
                                      "College degree" = "6", 
                                      "Some grad school" = "7", 
                                      "Grad degree" = "8", 
                                      NULL = "98", 
                                      NULL = "99"))

pew %>% 
  drop_na(education_level) %>% 
  count(education_level)

This table shows that the highest number of YouTube users have a college degree and are therefore watching cat videos at work. Losers.

pew %>% 
  drop_na(education_level, youtube_use) %>% 
  count(education_level, youtube_use)

Here’s the two factors run simultaneously, showing that college grads really do watch more cat videos than the rest of us.

pew %>% 
  drop_na(youtube_use) %>% 
  ggplot(aes(x = youtube_use, fill = sex)) +
  geom_bar()+ 
  scale_fill_viridis_d() +
  coord_flip()

Shall we start with a basic yes/no graph? R Studio has a personal vendetta against me and will not publish my graphs in color. Just imagine it pretty, okay? Okay.

pew %>% 
  drop_na(youtube_use) %>%
  drop_na(education_level) %>% 
  ggplot(aes(x = education_level, fill = youtube_use)) +
  geom_bar(position = "fill") +
  scale_fill_viridis_d() +
  coord_flip() +
  theme_minimal() +
  labs(x = "Level of education", y = "Percentage", fill = "Do you use YouTube?", title = "YouTube Usage by Education Level")

Okay, this graph showed up in color so whatever. Look at this one instead.

pew <- pew %>% 
  mutate(education_level_simple = fct_collapse(education_level, 
                                               "no_degree" = c("HS graduate", 
                                                                        "Some HS", 
                                                                        "Less than HS",
                                                               "Some college"),
                                               "degree" = 
                                                 c("Associate degree", 
                                                   "College degree", 
                                                   "Some grad school", 
                                                   "Grad degree")))

pew %>% 
  drop_na(education_level_simple, youtube_use) %>% 
  count(education_level_simple, youtube_use)

People apparently love YouTube. 1434 “yes” responses versus 484 “no.”

pew %>% 
  drop_na(youtube_use) %>%
  drop_na(education_level_simple) %>% 
  ggplot(aes(x = education_level_simple, fill = youtube_use)) +
  geom_bar(position = "fill") +
  scale_fill_viridis_d() +
  coord_flip() +
  theme_minimal() +
  labs(x = "Level of education", y = "Percentage", fill = "Do you use YouTube?", title = "YouTube Usage by Education Level")

pew <- pew %>% 
  mutate(emplnw = as.factor(emplnw)) %>% 
  mutate(employement = fct_recode(emplnw, 
                                  "Employed full time" = "1", 
                                  "Employed part-time" = "2",
                                  "Retired" = "3",
                                  "Not employed" = "4",
                                  "Self-employed" = "5", 
                                  "Disabled" = "6", 
                                  "Student" = "7", 
                                  NULL = "8", 
                                  NULL = "98", 
                                  NULL = "99"))

pew %>% 
  drop_na(emplnw) %>% 
  count(employement)
Factor `employement` contains implicit NA, consider using `forcats::fct_explicit_na`

Since I made fun of employed people watching the most YouTube, let’s back it up. First up is a factor and recode. Now let’s cross it over with actual use.

pew %>% 
  drop_na(employement, youtube_use) %>% 
  count(employement, youtube_use)

What are they watching? Why?

pew <- pew %>% 
  mutate(employement_simple = fct_collapse(employement, 
                                               "employed" = c("Employed full time", 
                                                                        "Employed part-time"),
                                               "not employed" = 
                                                 c("Retired", 
                                                   "Not employed", 
                                                   "Self-employed",
                                                   "Student",
                                                   "Disabled")))
pew %>% 
  drop_na(employement_simple, youtube_use) %>% 
  count(employement_simple, youtube_use)

Almost twice as many employed people. Let’s see a graph and then I’ll leave it alone.

pew %>% 
  drop_na(youtube_use) %>%
  drop_na(employement_simple) %>% 
  ggplot(aes(x = employement_simple, fill = youtube_use)) +
  geom_bar(position = "fill") +
  scale_fill_viridis_d() +
  coord_flip() +
  theme_minimal() +
  labs(x = "Employment Status", y = "Percentage", fill = "Do you use YouTube?", title = "YouTube Usage by Employment Status")

This is so great, I love it.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0tLS0KdGl0bGU6ICJBUHJhdHQgUGV3IEFzc2lnbm1lbnQiCm91dHB1dDogaHRtbF9kb2N1bWVudAotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKIyMgUiBNYXJrZG93bgoKVGhpcyBpcyBhbiBSIE1hcmtkb3duIGRvY3VtZW50LiAKCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKcGV3IDwtIHJlYWRfY3N2KCJKYW51YXJ5IDMtMTAsIDIwMTggLSBDb3JlIFRyZW5kcyBTdXJ2ZXkvSmFudWFyeSAzLTEwLCAyMDE4IC0gQ29yZSBUcmVuZHMgU3VydmV5IC0gQ1NWLmNzdiIpCmBgYAoKYGBge3J9CnBldyA8LSBwZXcgJT4lIAogIG11dGF0ZSh3ZWIxZSA9IGFzLmZhY3Rvcih3ZWIxZSkpICU+JSAKICBtdXRhdGUoeW91dHViZV91c2UgPSBmY3RfcmVjb2RlKHdlYjFlLCAiWWVzIiA9ICIxIiwgIk5vIiA9ICIyIiwgTlVMTCA9ICI4IiwgTlVMTCA9ICI5IikpIAoKcGV3ICU+JSAKICBkcm9wX25hKHlvdXR1YmVfdXNlKSAlPiUgCiAgY291bnQoeW91dHViZV91c2UpCmBgYApQZXJoYXBzIHVuc3VycHJpc2luZ2x5LCBtb3JlIHBlb3BsZSBhbnN3ZXJlZCAiWWVzIiB0byB1c2luZyBZb3VUdWJlIHRoYW4gIk5vLiIgQ2F0IHZpZHMsIG1hbi4gCgpgYGB7cn0KcGV3IDwtIHBldyAlPiUgCiAgbXV0YXRlKGVkdWMyID0gYXMuZmFjdG9yKGVkdWMyKSkgJT4lIAogIG11dGF0ZShlZHVjYXRpb25fbGV2ZWwgPSBmY3RfcmVjb2RlKGVkdWMyLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTGVzcyB0aGFuIEhTIiA9ICIxIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgSFMiID0gIjIiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiSFMgZ3JhZHVhdGUiID0gIjMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBjb2xsZWdlIiA9ICI0IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkFzc29jaWF0ZSBkZWdyZWUiID0gIjUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ29sbGVnZSBkZWdyZWUiID0gIjYiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBncmFkIHNjaG9vbCIgPSAiNyIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJHcmFkIGRlZ3JlZSIgPSAiOCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE5VTEwgPSAiOTgiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBOVUxMID0gIjk5IikpCgpwZXcgJT4lIAogIGRyb3BfbmEoZWR1Y2F0aW9uX2xldmVsKSAlPiUgCiAgY291bnQoZWR1Y2F0aW9uX2xldmVsKQpgYGAKVGhpcyB0YWJsZSBzaG93cyB0aGF0IHRoZSBoaWdoZXN0IG51bWJlciBvZiBZb3VUdWJlIHVzZXJzIGhhdmUgYSBjb2xsZWdlIGRlZ3JlZSBhbmQgYXJlIHRoZXJlZm9yZSB3YXRjaGluZyBjYXQgdmlkZW9zIGF0IHdvcmsuIExvc2Vycy4gCgpgYGB7cn0KcGV3ICU+JSAKICBkcm9wX25hKGVkdWNhdGlvbl9sZXZlbCwgeW91dHViZV91c2UpICU+JSAKICBjb3VudChlZHVjYXRpb25fbGV2ZWwsIHlvdXR1YmVfdXNlKQpgYGAKSGVyZSdzIHRoZSB0d28gZmFjdG9ycyBydW4gc2ltdWx0YW5lb3VzbHksIHNob3dpbmcgdGhhdCBjb2xsZWdlIGdyYWRzIHJlYWxseSBkbyB3YXRjaCBtb3JlIGNhdCB2aWRlb3MgdGhhbiB0aGUgcmVzdCBvZiB1cy4gICAKCmBgYHtyfQpwZXcgJT4lIAogIGRyb3BfbmEoeW91dHViZV91c2UpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSB5b3V0dWJlX3VzZSwgZmlsbCA9IHNleCkpICsKICBnZW9tX2JhcigpKyAKICBzY2FsZV9maWxsX3ZpcmlkaXNfZCgpICsKICBjb29yZF9mbGlwKCkKYGBgClNoYWxsIHdlIHN0YXJ0IHdpdGggYSBiYXNpYyB5ZXMvbm8gZ3JhcGg/IFIgU3R1ZGlvIGhhcyBhIHBlcnNvbmFsIHZlbmRldHRhIGFnYWluc3QgbWUgYW5kIHdpbGwgbm90IHB1Ymxpc2ggbXkgZ3JhcGhzIGluIGNvbG9yLiBKdXN0IGltYWdpbmUgaXQgcHJldHR5LCBva2F5PyBPa2F5LgoKYGBge3J9CnBldyAlPiUgCiAgZHJvcF9uYSh5b3V0dWJlX3VzZSkgJT4lCiAgZHJvcF9uYShlZHVjYXRpb25fbGV2ZWwpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBlZHVjYXRpb25fbGV2ZWwsIGZpbGwgPSB5b3V0dWJlX3VzZSkpICsKICBnZW9tX2Jhcihwb3NpdGlvbiA9ICJmaWxsIikgKwogIHNjYWxlX2ZpbGxfdmlyaWRpc19kKCkgKwogIGNvb3JkX2ZsaXAoKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHggPSAiTGV2ZWwgb2YgZWR1Y2F0aW9uIiwgeSA9ICJQZXJjZW50YWdlIiwgZmlsbCA9ICJEbyB5b3UgdXNlIFlvdVR1YmU/IiwgdGl0bGUgPSAiWW91VHViZSBVc2FnZSBieSBFZHVjYXRpb24gTGV2ZWwiKQpgYGAKT2theSwgdGhpcyBncmFwaCBzaG93ZWQgdXAgaW4gY29sb3Igc28gd2hhdGV2ZXIuIExvb2sgYXQgdGhpcyBvbmUgaW5zdGVhZC4gCgpgYGB7cn0KcGV3IDwtIHBldyAlPiUgCiAgbXV0YXRlKGVkdWNhdGlvbl9sZXZlbF9zaW1wbGUgPSBmY3RfY29sbGFwc2UoZWR1Y2F0aW9uX2xldmVsLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAibm9fZGVncmVlIiA9IGMoIkhTIGdyYWR1YXRlIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJTb21lIEhTIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJMZXNzIHRoYW4gSFMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBjb2xsZWdlIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImRlZ3JlZSIgPSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGMoIkFzc29jaWF0ZSBkZWdyZWUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkNvbGxlZ2UgZGVncmVlIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJTb21lIGdyYWQgc2Nob29sIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJHcmFkIGRlZ3JlZSIpKSkKCnBldyAlPiUgCiAgZHJvcF9uYShlZHVjYXRpb25fbGV2ZWxfc2ltcGxlLCB5b3V0dWJlX3VzZSkgJT4lIAogIGNvdW50KGVkdWNhdGlvbl9sZXZlbF9zaW1wbGUsIHlvdXR1YmVfdXNlKQpgYGAKUGVvcGxlIGFwcGFyZW50bHkgbG92ZSBZb3VUdWJlLiAxNDM0ICJ5ZXMiIHJlc3BvbnNlcyB2ZXJzdXMgNDg0ICJuby4iCgpgYGB7cn0KcGV3ICU+JSAKICBkcm9wX25hKHlvdXR1YmVfdXNlKSAlPiUKICBkcm9wX25hKGVkdWNhdGlvbl9sZXZlbF9zaW1wbGUpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBlZHVjYXRpb25fbGV2ZWxfc2ltcGxlLCBmaWxsID0geW91dHViZV91c2UpKSArCiAgZ2VvbV9iYXIocG9zaXRpb24gPSAiZmlsbCIpICsKICBzY2FsZV9maWxsX3ZpcmlkaXNfZCgpICsKICBjb29yZF9mbGlwKCkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyh4ID0gIkxldmVsIG9mIGVkdWNhdGlvbiIsIHkgPSAiUGVyY2VudGFnZSIsIGZpbGwgPSAiRG8geW91IHVzZSBZb3VUdWJlPyIsIHRpdGxlID0gIllvdVR1YmUgVXNhZ2UgYnkgRWR1Y2F0aW9uIExldmVsIikKYGBgCgoKYGBge3J9CnBldyA8LSBwZXcgJT4lIAogIG11dGF0ZShlbXBsbncgPSBhcy5mYWN0b3IoZW1wbG53KSkgJT4lIAogIG11dGF0ZShlbXBsb3llbWVudCA9IGZjdF9yZWNvZGUoZW1wbG53LCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJFbXBsb3llZCBmdWxsIHRpbWUiID0gIjEiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJFbXBsb3llZCBwYXJ0LXRpbWUiID0gIjIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlJldGlyZWQiID0gIjMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk5vdCBlbXBsb3llZCIgPSAiNCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU2VsZi1lbXBsb3llZCIgPSAiNSIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkRpc2FibGVkIiA9ICI2IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU3R1ZGVudCIgPSAiNyIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTlVMTCA9ICI4IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBOVUxMID0gIjk4IiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBOVUxMID0gIjk5IikpCgpwZXcgJT4lIAogIGRyb3BfbmEoZW1wbG53KSAlPiUgCiAgY291bnQoZW1wbG95ZW1lbnQpCmBgYApTaW5jZSBJIG1hZGUgZnVuIG9mIGVtcGxveWVkIHBlb3BsZSB3YXRjaGluZyB0aGUgbW9zdCBZb3VUdWJlLCBsZXQncyBiYWNrIGl0IHVwLiBGaXJzdCB1cCBpcyBhIGZhY3RvciBhbmQgcmVjb2RlLgpOb3cgbGV0J3MgY3Jvc3MgaXQgb3ZlciB3aXRoIGFjdHVhbCB1c2UuIAoKYGBge3J9CnBldyAlPiUgCiAgZHJvcF9uYShlbXBsb3llbWVudCwgeW91dHViZV91c2UpICU+JSAKICBjb3VudChlbXBsb3llbWVudCwgeW91dHViZV91c2UpCmBgYApXaGF0IGFyZSB0aGV5IHdhdGNoaW5nPyBXaHk/IAoKYGBge3J9CnBldyA8LSBwZXcgJT4lIAogIG11dGF0ZShlbXBsb3llbWVudF9zaW1wbGUgPSBmY3RfY29sbGFwc2UoZW1wbG95ZW1lbnQsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJlbXBsb3llZCIgPSBjKCJFbXBsb3llZCBmdWxsIHRpbWUiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkVtcGxveWVkIHBhcnQtdGltZSIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJub3QgZW1wbG95ZWQiID0gCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjKCJSZXRpcmVkIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJOb3QgZW1wbG95ZWQiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNlbGYtZW1wbG95ZWQiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU3R1ZGVudCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJEaXNhYmxlZCIpKSkKcGV3ICU+JSAKICBkcm9wX25hKGVtcGxveWVtZW50X3NpbXBsZSwgeW91dHViZV91c2UpICU+JSAKICBjb3VudChlbXBsb3llbWVudF9zaW1wbGUsIHlvdXR1YmVfdXNlKQpgYGAKQWxtb3N0IHR3aWNlIGFzIG1hbnkgZW1wbG95ZWQgcGVvcGxlLiBMZXQncyBzZWUgYSBncmFwaCBhbmQgdGhlbiBJJ2xsIGxlYXZlIGl0IGFsb25lLiAKCmBgYHtyfQpwZXcgJT4lIAogIGRyb3BfbmEoeW91dHViZV91c2UpICU+JQogIGRyb3BfbmEoZW1wbG95ZW1lbnRfc2ltcGxlKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZW1wbG95ZW1lbnRfc2ltcGxlLCBmaWxsID0geW91dHViZV91c2UpKSArCiAgZ2VvbV9iYXIocG9zaXRpb24gPSAiZmlsbCIpICsKICBzY2FsZV9maWxsX3ZpcmlkaXNfZCgpICsKICBjb29yZF9mbGlwKCkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyh4ID0gIkVtcGxveW1lbnQgU3RhdHVzIiwgeSA9ICJQZXJjZW50YWdlIiwgZmlsbCA9ICJEbyB5b3UgdXNlIFlvdVR1YmU/IiwgdGl0bGUgPSAiWW91VHViZSBVc2FnZSBieSBFbXBsb3ltZW50IFN0YXR1cyIpCmBgYApUaGlzIGlzIHNvIGdyZWF0LCBJIGxvdmUgaXQuIAo=