Bcase = scan("C:/Users/admin/Desktop/TSBcase4years.txt")
ts.Bcase = ts(data = Bcase, start = c(2017,1), frequency = 52)
ts.Bcase
## Time Series:
## Start = c(2017, 1) 
## End = c(2020, 5) 
## Frequency = 52 
##   [1]  4614648  4277881  6350436  8549914  6901816  6851594  6883294
##   [8]  7725983  6474413  6611395  5801667  6737096  8766446  7981651
##  [15]  6119259  5492393  6440131  6631434  5302194  5610582  7872824
##  [22] 10212149 10067921  9752701 10971478  9556546  8926904  9056203
##  [29] 10397286 11168614  9366451  9895920  9709980 11885922 12239436
##  [36] 11254488  7815029  7972991  8428031  7915513  8400323  7845750
##  [43]  8408058  7925964  7898994  6848700  7258329  6571322  6658055
##  [50]  6641390  6096181  6532440  7169074  6396842  7933800  6306913
##  [57]  7233875  6069921  7189243  7149594  6949889  6811420  6496747
##  [64]  7355842  8017409 10287638 12763221 14382594 11165126  9620406
##  [71] 10294388 13400454 13689181 13045490 16795020 19643486 18335780
##  [78] 16174950 13929293 12996372 14273586 12390835 17471701 18321583
##  [85] 16648429 13984175 15677681 13921935  8933402 11445061 11151125
##  [92]  9910043 11686773  9738036 10454577 10963451  9455539  8756873
##  [99] 11903391 12162217 11797065 11457483 11117191 11203548 11706251
## [106] 11432017  9614850  9184222  9184222 10209429 10734420 10279031
## [113] 12862144 12239622 11412318 12044220 11323803 10345438  9496123
## [120]  9479539  8960258  9791516 11783355 14455359 16462009 13707988
## [127] 12163750 13550706 10922921 15502983 12427797 11626119 12805941
## [134] 14970189 14422308 14450597 12808338  9886357  8612896 10781416
## [141]  5643496  5666656  6530793  6560657  5549700  5766594  5703512
## [148]  6931988  5874779  6389493  6693185  3908297  5720620  6060855
## [155]  7458445  5911833  5231868  5903372  7462769  6298243  8613661
comp = decompose(ts.Bcase)
library(ggplot2)
library(ggfortify)
autoplot(comp)
## Warning: attributes are not identical across measure variables;
## they will be dropped
## Warning: Removed 104 rows containing missing values (geom_path).

comp
## $x
## Time Series:
## Start = c(2017, 1) 
## End = c(2020, 5) 
## Frequency = 52 
##   [1]  4614648  4277881  6350436  8549914  6901816  6851594  6883294
##   [8]  7725983  6474413  6611395  5801667  6737096  8766446  7981651
##  [15]  6119259  5492393  6440131  6631434  5302194  5610582  7872824
##  [22] 10212149 10067921  9752701 10971478  9556546  8926904  9056203
##  [29] 10397286 11168614  9366451  9895920  9709980 11885922 12239436
##  [36] 11254488  7815029  7972991  8428031  7915513  8400323  7845750
##  [43]  8408058  7925964  7898994  6848700  7258329  6571322  6658055
##  [50]  6641390  6096181  6532440  7169074  6396842  7933800  6306913
##  [57]  7233875  6069921  7189243  7149594  6949889  6811420  6496747
##  [64]  7355842  8017409 10287638 12763221 14382594 11165126  9620406
##  [71] 10294388 13400454 13689181 13045490 16795020 19643486 18335780
##  [78] 16174950 13929293 12996372 14273586 12390835 17471701 18321583
##  [85] 16648429 13984175 15677681 13921935  8933402 11445061 11151125
##  [92]  9910043 11686773  9738036 10454577 10963451  9455539  8756873
##  [99] 11903391 12162217 11797065 11457483 11117191 11203548 11706251
## [106] 11432017  9614850  9184222  9184222 10209429 10734420 10279031
## [113] 12862144 12239622 11412318 12044220 11323803 10345438  9496123
## [120]  9479539  8960258  9791516 11783355 14455359 16462009 13707988
## [127] 12163750 13550706 10922921 15502983 12427797 11626119 12805941
## [134] 14970189 14422308 14450597 12808338  9886357  8612896 10781416
## [141]  5643496  5666656  6530793  6560657  5549700  5766594  5703512
## [148]  6931988  5874779  6389493  6693185  3908297  5720620  6060855
## [155]  7458445  5911833  5231868  5903372  7462769  6298243  8613661
## 
## $seasonal
## Time Series:
## Start = c(2017, 1) 
## End = c(2020, 5) 
## Frequency = 52 
##   [1] -1560546.17 -2112965.75 -2277005.69 -3335620.06 -2914722.87
##   [6] -3030300.86 -2244937.80 -2497739.46 -1278986.88 -1639772.70
##  [11] -2198046.76 -1431020.05 -1440235.56  -778668.49    54684.16
##  [16]   879779.52  -965596.42 -1304546.06    42874.97  2943849.50
##  [21]  4096462.77  2413126.81  3533082.71  5658091.65  3686587.83
##  [26]  4892638.18  1736164.78  1193876.61  2451141.20  2805734.59
##  [31]  3717738.80  3975305.43  3011099.96  2736154.66  3716680.15
##  [36]  2288564.12 -1979464.95  -697143.75  -654401.76 -1554861.10
##  [41]  -451690.39 -1738749.28 -1130609.75 -1144528.44 -1958321.57
##  [46] -2906483.97 -1212227.59 -1484419.17 -1650511.69 -1856970.93
##  [51] -2317747.62 -2084794.81 -1560546.17 -2112965.75 -2277005.69
##  [56] -3335620.06 -2914722.87 -3030300.86 -2244937.80 -2497739.46
##  [61] -1278986.88 -1639772.70 -2198046.76 -1431020.05 -1440235.56
##  [66]  -778668.49    54684.16   879779.52  -965596.42 -1304546.06
##  [71]    42874.97  2943849.50  4096462.77  2413126.81  3533082.71
##  [76]  5658091.65  3686587.83  4892638.18  1736164.78  1193876.61
##  [81]  2451141.20  2805734.59  3717738.80  3975305.43  3011099.96
##  [86]  2736154.66  3716680.15  2288564.12 -1979464.95  -697143.75
##  [91]  -654401.76 -1554861.10  -451690.39 -1738749.28 -1130609.75
##  [96] -1144528.44 -1958321.57 -2906483.97 -1212227.59 -1484419.17
## [101] -1650511.69 -1856970.93 -2317747.62 -2084794.81 -1560546.17
## [106] -2112965.75 -2277005.69 -3335620.06 -2914722.87 -3030300.86
## [111] -2244937.80 -2497739.46 -1278986.88 -1639772.70 -2198046.76
## [116] -1431020.05 -1440235.56  -778668.49    54684.16   879779.52
## [121]  -965596.42 -1304546.06    42874.97  2943849.50  4096462.77
## [126]  2413126.81  3533082.71  5658091.65  3686587.83  4892638.18
## [131]  1736164.78  1193876.61  2451141.20  2805734.59  3717738.80
## [136]  3975305.43  3011099.96  2736154.66  3716680.15  2288564.12
## [141] -1979464.95  -697143.75  -654401.76 -1554861.10  -451690.39
## [146] -1738749.28 -1130609.75 -1144528.44 -1958321.57 -2906483.97
## [151] -1212227.59 -1484419.17 -1650511.69 -1856970.93 -2317747.62
## [156] -2084794.81 -1560546.17 -2112965.75 -2277005.69 -3335620.06
## [161] -2914722.87
## 
## $trend
## Time Series:
## Start = c(2017, 1) 
## End = c(2020, 5) 
## Frequency = 52 
##   [1]       NA       NA       NA       NA       NA       NA       NA
##   [8]       NA       NA       NA       NA       NA       NA       NA
##  [15]       NA       NA       NA       NA       NA       NA       NA
##  [22]       NA       NA       NA       NA       NA  7941410  7986347
##  [29]  8021946  8015603  7997229  7992906  7988331  7985731  7984761
##  [36]  7991256  7999863  8012496  8011243  8026213  8112271  8261638
##  [43]  8392553  8466726  8543468  8666372  8797201  8880371  8972299
##  [50]  9132086  9298000  9432450  9544188  9630174  9705332  9754357
##  [57]  9844044 10002995 10150727 10237618 10290854 10349562 10385964
##  [64] 10430103 10489672 10535034 10585813 10635608 10673481 10722366
##  [71] 10766539 10799854 10862866 10961288 11064461 11160183 11254770
##  [78] 11347964 11436505 11528547 11593126 11636956 11683376 11741932
##  [85] 11815824 11880002 11966942 12075985 12175444 12267790 12344663
##  [92] 12377011 12346152 12267593 12199247 12179692 12195654 12220115
##  [99] 12256920 12289952 12251790 12148675 12018813 11941074 11920175
## [106] 11892562 11865275 11875964 11871445 11804903 11730758 11654432
## [113] 11547099 11448971 11387140 11299945 11199957 11123325 11032109
## [120] 10934912 10851041 10766594 10693400 10636206 10563344 10433882
## [127] 10296090 10185772 10098701 10012639  9899503  9784089  9710236
## [134]  9661793  9628557       NA       NA       NA       NA       NA
## [141]       NA       NA       NA       NA       NA       NA       NA
## [148]       NA       NA       NA       NA       NA       NA       NA
## [155]       NA       NA       NA       NA       NA       NA       NA
## 
## $random
## Time Series:
## Start = c(2017, 1) 
## End = c(2020, 5) 
## Frequency = 52 
##   [1]            NA            NA            NA            NA            NA
##   [6]            NA            NA            NA            NA            NA
##  [11]            NA            NA            NA            NA            NA
##  [16]            NA            NA            NA            NA            NA
##  [21]            NA            NA            NA            NA            NA
##  [26]            NA  -750671.0328  -124020.2700   -75801.1386   347276.1339
##  [31] -2348516.6354 -2072291.0504 -1289451.3148  1164036.3679   537995.1996
##  [36]   974668.0265  1794631.3150   657639.1755  1071189.9784  1444160.6515
##  [41]   739742.7332  1322861.6755  1146114.7957   603766.7332  1313847.8823
##  [46]  1088811.7957  -326644.7043  -824630.3004  -663732.0889  -633725.1946
##  [51]  -884071.8004  -815214.7043  -814567.7427 -1120366.2956   505473.2861
##  [56]  -111823.5793   304554.0073  -902773.0889  -716545.9975  -590284.7043
##  [61] -2061977.8437 -1898369.5937 -1691170.6562 -1643241.2427 -1032027.6129
##  [66]   531272.5505  2122724.2477  2867206.3486  1457241.1563   202586.1275
##  [71]  -515026.2908  -343249.4158 -1270147.5552  -328925.2620  2197476.6707
##  [76]  2825211.5938  3394421.8775   -65651.9062   756623.2845   273948.6146
##  [81]   229318.9384 -2051855.8277  2070586.1916  2604345.2669  1821505.5313
##  [86]  -631982.1514    -5940.9831  -442613.8100 -1262577.0985  -125584.9591
##  [91]  -539135.7620  -912106.4350  -207688.5168  -790807.4591  -614060.5793
##  [96]   -71712.5168  -781793.6658  -556757.5793   858698.9207  1356684.5169
## [101]  1195786.3054  1165779.4111  1416126.0169  1347268.9207  1346621.9592
## [106]  1652420.5121    26580.9304   643877.7957   227500.2092  1434827.3054
## [111]  1248600.2140  1122338.9207  2594032.0602  2430423.8102  2223224.8727
## [116]  2175295.4592  1564081.8294      781.6659 -1590670.0312 -2335152.1321
## [121]  -925186.9398   329468.0890  1047080.5073   875303.6323  1802201.7717
## [126]   860979.4784 -1665422.4543 -2293157.3773 -2862367.6610   597706.1227
## [131]   792129.0730   648152.9800   644563.5249  2502661.0185  1076011.7685
## [136]            NA            NA            NA            NA            NA
## [141]            NA            NA            NA            NA            NA
## [146]            NA            NA            NA            NA            NA
## [151]            NA            NA            NA            NA            NA
## [156]            NA            NA            NA            NA            NA
## [161]            NA
## 
## $figure
##  [1] -1560546.17 -2112965.75 -2277005.69 -3335620.06 -2914722.87
##  [6] -3030300.86 -2244937.80 -2497739.46 -1278986.88 -1639772.70
## [11] -2198046.76 -1431020.05 -1440235.56  -778668.49    54684.16
## [16]   879779.52  -965596.42 -1304546.06    42874.97  2943849.50
## [21]  4096462.77  2413126.81  3533082.71  5658091.65  3686587.83
## [26]  4892638.18  1736164.78  1193876.61  2451141.20  2805734.59
## [31]  3717738.80  3975305.43  3011099.96  2736154.66  3716680.15
## [36]  2288564.12 -1979464.95  -697143.75  -654401.76 -1554861.10
## [41]  -451690.39 -1738749.28 -1130609.75 -1144528.44 -1958321.57
## [46] -2906483.97 -1212227.59 -1484419.17 -1650511.69 -1856970.93
## [51] -2317747.62 -2084794.81
## 
## $type
## [1] "additive"
## 
## attr(,"class")
## [1] "decomposed.ts"