Load Packages
Problem Statement
The problem C23, selected page 353,
Doing the computations by hand, find the determinant of the matrix below.
## [,1] [,2] [,3]
## [1,] 1 3 2
## [2,] 4 1 3
## [3,] 1 0 1
Solution
Determinant of the matrix above can be compute by hand as following
det (matr)
= \(\begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 1 & 0 & 1 \end{vmatrix}\)
= \(1\begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix}-3\begin{vmatrix} 4 & 3 \\ 1 & 1 \end{vmatrix}+2\begin{vmatrix} 4 & 1 \\ 1 & 0 \end{vmatrix}\)
= 1(1X1 - 3X0) - 3(4X1 - 3X1) + 2(4X0 -1X1)
= 1(1) - 3(1) + 2(-1)
= 1 - 3 - 2
= -4
Above we used
\(Determinant\quad of\quad Matrices\quad of\quad Size\quad Two\\ suppose\quad that\quad A\quad =\quad \begin{vmatrix} a & b \\ c & d \end{vmatrix}\quad then\quad det(A)\quad =\quad ad\quad -\quad bc\)
We can verify the result using R
## [1] -4