glimpse(pew)
Observations: 2,002
Variables: 70
$ respid [3m[90m<dbl>[39m[23m 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15…
$ sample [3m[90m<dbl>[39m[23m 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ comp [3m[90m<dbl>[39m[23m 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ int_date [3m[90m<dbl>[39m[23m 180103, 180103, 180103, 180103, 180103, 18010…
$ lang [3m[90m<dbl>[39m[23m 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ cregion [3m[90m<dbl>[39m[23m 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 3, 3, 1, 3, 3, …
$ state [3m[90m<dbl>[39m[23m 42, 45, 34, 24, 33, 37, 12, 34, 51, 54, 51, 1…
$ density [3m[90m<dbl>[39m[23m 5, 2, 5, 4, 2, 3, 5, 5, 1, 2, 2, 5, 4, 1, 2, …
$ usr [3m[90m<chr>[39m[23m "U", "S", "S", "S", "R", "U", "U", "S", "R", …
$ qs1 [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ sex [3m[90m<dbl>[39m[23m 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, …
$ eminuse [3m[90m<dbl>[39m[23m 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, …
$ intmob [3m[90m<dbl>[39m[23m 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, …
$ intfreq [3m[90m<dbl>[39m[23m 1, NA, 3, 4, 2, 2, 2, 2, NA, 2, 2, 2, NA, 3, …
$ home4nw [3m[90m<dbl>[39m[23m 1, NA, 1, 1, 1, 1, 1, 1, NA, 1, 1, 1, NA, 1, …
$ bbhome1 [3m[90m<dbl>[39m[23m 2, NA, 2, 2, 2, 2, 2, 2, NA, 2, 2, 2, NA, 2, …
$ bbhome2 [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ device1a [3m[90m<dbl>[39m[23m 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, …
$ smart2 [3m[90m<dbl>[39m[23m 1, 2, 1, 1, 1, 1, 1, 1, NA, 1, 1, 1, NA, 1, 1…
$ snsint2 [3m[90m<dbl>[39m[23m 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, …
$ device1b [3m[90m<dbl>[39m[23m 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, …
$ device1c [3m[90m<dbl>[39m[23m 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, …
$ device1d [3m[90m<dbl>[39m[23m 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 9, …
$ web1a [3m[90m<dbl>[39m[23m 2, 2, 2, 2, 2, 1, 2, 2, NA, 2, 1, 2, NA, 1, 2…
$ web1b [3m[90m<dbl>[39m[23m 1, 2, 2, 2, 2, 2, 2, 2, NA, 2, 1, 2, NA, 2, 2…
$ web1c [3m[90m<dbl>[39m[23m 1, 2, 2, 1, 1, 1, 1, 1, NA, 1, 1, 1, NA, 1, 1…
$ web1d [3m[90m<dbl>[39m[23m 1, 2, 2, 2, 2, 2, 2, 2, NA, 2, 2, 2, NA, 2, 2…
$ web1e [3m[90m<dbl>[39m[23m 1, 2, 2, 2, 1, 1, 1, 1, NA, 1, 1, 1, NA, 1, 2…
$ web1f [3m[90m<dbl>[39m[23m 1, 2, 2, 2, 2, 2, 2, 2, NA, 2, 2, 2, NA, 1, 2…
$ web1g [3m[90m<dbl>[39m[23m 2, 2, 2, 2, 1, 1, 1, 1, NA, 2, 2, 2, NA, 1, 1…
$ web1h [3m[90m<dbl>[39m[23m 2, 2, 2, 2, 1, 1, 1, 1, NA, 2, 2, 2, NA, 2, 2…
$ sns2a [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, 2, NA, NA, NA, NA, 1, NA,…
$ sns2b [3m[90m<dbl>[39m[23m 1, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4, NA,…
$ sns2c [3m[90m<dbl>[39m[23m 1, NA, NA, 3, 3, 1, 3, 2, NA, 2, 3, 5, NA, 1,…
$ sns2d [3m[90m<dbl>[39m[23m 3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ sns2e [3m[90m<dbl>[39m[23m 3, NA, NA, NA, 2, 3, 5, 4, NA, 4, 4, 3, NA, 4…
$ pial5a [3m[90m<dbl>[39m[23m 2, 2, 1, 2, 1, 3, 3, 2, 6, 1, 1, 2, 1, 1, 3, …
$ pial5b [3m[90m<dbl>[39m[23m 1, 3, 2, 3, 2, 5, 3, 2, NA, 2, 4, 1, NA, 3, 1…
$ pial5c [3m[90m<dbl>[39m[23m 2, NA, 1, 3, 1, 1, 3, 2, NA, 2, 1, 1, NA, 1, …
$ pial5d [3m[90m<dbl>[39m[23m 3, NA, NA, 3, 3, 1, 4, 3, NA, 3, NA, 4, NA, 3…
$ pial11 [3m[90m<dbl>[39m[23m 1, 8, 1, 2, 1, 3, 8, 1, 8, 1, 1, 1, 8, 1, 2, …
$ pial11a [3m[90m<dbl>[39m[23m 1, NA, 1, 1, 1, NA, NA, 1, NA, 1, 1, 1, NA, 1…
$ `pial11ao@` [3m[90m<chr>[39m[23m "information has become available more freque…
$ pial11_igbm [3m[90m<dbl>[39m[23m 1, 9, 2, 5, 1, 9, 9, 1, 9, 1, 1, 1, 9, 1, 8, …
$ pial12 [3m[90m<dbl>[39m[23m 1, NA, 1, 1, 1, 1, 1, 1, NA, 1, 1, 1, NA, 1, …
$ books1 [3m[90m<dbl>[39m[23m 1, 5, 0, 2, 6, 18, 3, 2, 3, 97, 5, 8, 6, 3, 9…
$ books2a [3m[90m<dbl>[39m[23m 1, 1, NA, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1,…
$ books2b [3m[90m<dbl>[39m[23m 2, 2, NA, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,…
$ books2c [3m[90m<dbl>[39m[23m 2, 2, NA, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2,…
$ age [3m[90m<dbl>[39m[23m 33, 76, 99, 60, 55, 58, 99, 72, 58, 68, 65, 6…
$ marital [3m[90m<dbl>[39m[23m 2, 1, 5, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, …
$ educ2 [3m[90m<dbl>[39m[23m 3, 98, 5, 5, 4, 7, 5, 6, 1, 6, 7, 6, 7, 6, 7,…
$ emplnw [3m[90m<dbl>[39m[23m 1, 3, 5, 8, 1, 1, 5, 4, 4, 3, 3, 2, 3, 3, 4, …
$ hisp [3m[90m<dbl>[39m[23m 2, 2, 2, 2, 2, 2, 9, 2, 2, 2, 2, 2, 2, 2, 2, …
$ racem1 [3m[90m<dbl>[39m[23m 1, 1, 1, 1, 1, 1, 9, 1, 2, 1, 1, 1, 3, 1, 1, …
$ racem2 [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ racem3 [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ racem4 [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ racecmb [3m[90m<dbl>[39m[23m 1, 1, 1, 1, 1, 1, 9, 1, 2, 1, 1, 1, 3, 1, 1, …
$ birth_hisp [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ inc [3m[90m<dbl>[39m[23m 6, 4, 4, 2, 7, 7, 9, 6, 1, 2, 2, 6, 4, 5, 99,…
$ party [3m[90m<dbl>[39m[23m 2, 3, 1, 2, 1, 3, 2, 3, 1, 4, 1, 3, 2, 1, 1, …
$ partyln [3m[90m<dbl>[39m[23m NA, 8, NA, NA, NA, 2, NA, 2, NA, 8, NA, 1, NA…
$ hh1 [3m[90m<dbl>[39m[23m 5, 2, 1, 2, 3, 2, 2, 2, 1, 2, 5, 2, 2, 2, 9, …
$ hh3 [3m[90m<dbl>[39m[23m 4, 2, NA, 2, 3, 2, 2, 2, NA, 2, 4, 2, 2, 2, 2…
$ ql1 [3m[90m<dbl>[39m[23m 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, …
$ ql1a [3m[90m<dbl>[39m[23m NA, 2, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA…
$ qc1 [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
$ weight [3m[90m<dbl>[39m[23m 1.7463586, 1.6597644, 0.4908044, 0.9479652, 0…
$ cellweight [3m[90m<dbl>[39m[23m NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
pew <- pew %>%
mutate(web1c = as.factor(web1c))
pew %>%
count(web1c)
pew <- pew %>%
mutate(educ2 = as.factor(educ2))
pew %>%
count(educ2)
pew <- pew %>%
mutate(web1c = as.factor(web1c))
pew %>%
count(web1c)
pew <- pew %>%
mutate(web1c = fct_recode( web1c,
"Yes" = "1",
"No" = "2",
NULL = "8",
NULL = "9"))
pew %>%
count(web1c)
pew <- pew %>%
mutate(educ2 = as.factor(educ2))
pew %>%
count(educ2)
pew <- pew %>%
mutate(educ2 = fct_recode( educ2,
"Less than HS" = "1",
"Some HS" = "2",
"HS graduate" = "3",
"Some college" = "4",
"Associate degree" = "5" ,
"College degree" = "6",
"Some grad school" = "7" ,
"Grad degree" = "8",
"Don't know" = "98",
"Refused" = "99"))
pew %>%
count(educ2)
pew %>%
drop_na(educ2,web1c)
pew %>%
count(educ2, web1c)
pew %>%
drop_na(web1c) %>%
ggplot(aes(x = educ2, fill = web1c)) +
geom_bar( position = "fill" ) + scale_fill_viridis_d() + coord_flip()

pew %>%
drop_na(educ2) %>%
ggplot(aes(x = educ2)) +
geom_bar()

pew %>%
drop_na(web1c) %>%
ggplot(aes(x = web1c)) +
geom_bar()

pew %>%
drop_na(educ2) %>%
ggplot(aes(x = educ2)) +
geom_bar() +
facet_wrap(vars(web1c)) +
coord_flip() +
theme_minimal() +
labs(y = "Facebook usge",
x = "Highschool/ College level",
title = "Facebook Users Vs Schooling")

pew <- pew %>%
mutate(edu2_simple = fct_collapse(educ2,
Highschool = c("Less than HS",
"Some HS",
"HS graduate"),
College = c("Some college",
"Associate degree","College degree", "Some grad school", "Grad degree", "Don't know", "Refused")))
pew %>%
count(edu2_simple)
pew %>%
drop_na(web1c) %>%
ggplot(aes(x = edu2_simple)) +
geom_bar()

LS0tCnRpdGxlOiAiUEVXIGFzc2lnbm1lbnQiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQpnbGltcHNlKHBldykKYGBgCgpgYGB7cn0KcGV3IDwtIHBldyAlPiUgCiAgbXV0YXRlKHdlYjFjID0gYXMuZmFjdG9yKHdlYjFjKSkKCgpwZXcgJT4lIAogIGNvdW50KHdlYjFjKQpgYGAKYGBge3J9CnBldyA8LSBwZXcgJT4lIAogIG11dGF0ZShlZHVjMiA9IGFzLmZhY3RvcihlZHVjMikpCgoKcGV3ICU+JSAKICBjb3VudChlZHVjMikKYGBgCmBgYHtyfQpwZXcgPC0gcGV3ICU+JSAKICBtdXRhdGUod2ViMWMgPSBhcy5mYWN0b3Iod2ViMWMpKQoKCnBldyAlPiUgCiAgY291bnQod2ViMWMpCmBgYAoKYGBge3J9CnBldyA8LSBwZXcgJT4lCiAgbXV0YXRlKHdlYjFjID0gZmN0X3JlY29kZSggd2ViMWMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJZZXMiID0gIjEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTm8iID0gIjIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTlVMTCA9ICI4IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTlVMTCA9ICI5IikpCgpwZXcgJT4lIAogIGNvdW50KHdlYjFjKQpgYGAKCmBgYHtyfQpwZXcgPC0gcGV3ICU+JSAKICBtdXRhdGUoZWR1YzIgPSBhcy5mYWN0b3IoZWR1YzIpKQoKCnBldyAlPiUgCiAgY291bnQoZWR1YzIpCmBgYAoKYGBge3J9CnBldyA8LSBwZXcgJT4lCiAgbXV0YXRlKGVkdWMyID0gZmN0X3JlY29kZSggZWR1YzIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJMZXNzIHRoYW4gSFMiID0gIjEiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZSBIUyIgPSAiMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkhTIGdyYWR1YXRlIiA9ICIzIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgY29sbGVnZSIgPSAiNCIsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJBc3NvY2lhdGUgZGVncmVlIiA9ICI1IiAsIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJDb2xsZWdlIGRlZ3JlZSIgPSAiNiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgZ3JhZCBzY2hvb2wiID0gIjciICwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICJHcmFkIGRlZ3JlZSIgPSAiOCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkRvbid0IGtub3ciID0gIjk4IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiUmVmdXNlZCIgPSAiOTkiKSkKCnBldyAlPiUgCiAgY291bnQoZWR1YzIpCmBgYApgYGB7cn0KcGV3ICU+JSAKCmRyb3BfbmEoZWR1YzIsd2ViMWMpCmBgYApgYGB7cn0KcGV3ICU+JSAKICBjb3VudChlZHVjMiwgd2ViMWMpCmBgYApgYGB7cn0KcGV3ICU+JSAKICBkcm9wX25hKHdlYjFjKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZWR1YzIsIGZpbGwgPSB3ZWIxYykpICsKICBnZW9tX2JhciggcG9zaXRpb24gPSAiZmlsbCIgKSArIHNjYWxlX2ZpbGxfdmlyaWRpc19kKCkgKyBjb29yZF9mbGlwKCkKYGBgCgpgYGB7cn0KcGV3ICU+JSAKICBkcm9wX25hKGVkdWMyKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZWR1YzIpKSArCiAgZ2VvbV9iYXIoKQpgYGAKCmBgYHtyfQpwZXcgJT4lIAogIGRyb3BfbmEod2ViMWMpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSB3ZWIxYykpICsKICBnZW9tX2JhcigpCmBgYApgYGB7cn0KcGV3ICU+JSAKICBkcm9wX25hKGVkdWMyKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gZWR1YzIpKSArCiAgZ2VvbV9iYXIoKSArCiAgZmFjZXRfd3JhcCh2YXJzKHdlYjFjKSkgKwogIGNvb3JkX2ZsaXAoKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHkgPSAiRmFjZWJvb2sgdXNnZSIsIAogICAgICAgeCA9ICJIaWdoc2Nob29sLyBDb2xsZWdlIGxldmVsIiwgCiAgICAgICB0aXRsZSA9ICJGYWNlYm9vayBVc2VycyBWcyBTY2hvb2xpbmciKQpgYGAKYGBge3J9CnBldyA8LSBwZXcgJT4lIAogIG11dGF0ZShlZHUyX3NpbXBsZSA9IGZjdF9jb2xsYXBzZShlZHVjMiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBIaWdoc2Nob29sID0gYygiTGVzcyB0aGFuIEhTIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgSFMiLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiSFMgZ3JhZHVhdGUiKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBDb2xsZWdlID0gYygiU29tZSBjb2xsZWdlIiwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQXNzb2NpYXRlIGRlZ3JlZSIsIkNvbGxlZ2UgZGVncmVlIiwgIlNvbWUgZ3JhZCBzY2hvb2wiLCAiR3JhZCBkZWdyZWUiLCAiRG9uJ3Qga25vdyIsICJSZWZ1c2VkIikpKQoKcGV3ICU+JSAKICBjb3VudChlZHUyX3NpbXBsZSkKYGBgCmBgYHtyfQpwZXcgJT4lIAogIGRyb3BfbmEod2ViMWMpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBlZHUyX3NpbXBsZSkpICsKICBnZW9tX2JhcigpCmBgYAoKCgo=