'data.frame': 30 obs. of 7 variables:
$ Species : num 58 31 3 25 2 18 24 10 8 2 ...
$ Endemics : num 23 21 3 9 1 11 0 7 4 2 ...
$ Area : num 25.09 1.24 0.21 0.1 0.05 ...
$ Elevation: num 346 109 114 46 77 119 93 168 71 112 ...
$ Nearest : num 0.6 0.6 2.8 1.9 1.9 8 6 34.1 0.4 2.6 ...
$ Scruz : num 0.6 26.3 58.7 47.4 1.9 ...
$ Adjacent : num 1.84 572.33 0.78 0.18 903.82 ...
[1] "Species" "Endemics" "Area" "Elevation" "Nearest" "Scruz"
[7] "Adjacent"
Species Endemics Area Elevation Nearest Scruz Adjacent
Baltra 58 23 25.09 346 0.6 0.6 1.84
Bartolome 31 21 1.24 109 0.6 26.3 572.33
Caldwell 3 3 0.21 114 2.8 58.7 0.78
Champion 25 9 0.10 46 1.9 47.4 0.18
Coamano 2 1 0.05 77 1.9 1.9 903.82
Daphne.Major 18 11 0.34 119 8.0 8.0 1.84
Daphne.Minor 24 0 0.08 93 6.0 12.0 0.34
Darwin 10 7 2.33 168 34.1 290.2 2.85
Eden 8 4 0.03 71 0.4 0.4 17.95
Enderby 2 2 0.18 112 2.6 50.2 0.10
Espanola 97 26 58.27 198 1.1 88.3 0.57
Fernandina 93 35 634.49 1494 4.3 95.3 4669.32
Gardner1 58 17 0.57 49 1.1 93.1 58.27
Gardner2 5 4 0.78 227 4.6 62.2 0.21
Genovesa 40 19 17.35 76 47.4 92.2 129.49
Isabela 347 89 4669.32 1707 0.7 28.1 634.49
Marchena 51 23 129.49 343 29.1 85.9 59.56
Onslow 2 2 0.01 25 3.3 45.9 0.10
Pinta 104 37 59.56 777 29.1 119.6 129.49
Pinzon 108 33 17.95 458 10.7 10.7 0.03
Las.Plazas 12 9 0.23 94 0.5 0.6 25.09
Rabida 70 30 4.89 367 4.4 24.4 572.33
SanCristobal 280 65 551.62 716 45.2 66.6 0.57
SanSalvador 237 81 572.33 906 0.2 19.8 4.89
SantaCruz 444 95 903.82 864 0.6 0.0 0.52
SantaFe 62 28 24.08 259 16.5 16.5 0.52
SantaMaria 285 73 170.92 640 2.6 49.2 0.10
Seymour 44 16 1.84 147 0.6 9.6 25.09
Tortuga 16 8 1.24 186 6.8 50.9 17.95
Wolf 21 12 2.85 253 34.1 254.7 2.33
pairs(~Species + Endemics + Area + Elevation + Nearest + Scruz + Adjacent, data = gala,
main = "Scatterplot Matrix")scatterplot(Species ~ Endemics, data = gala, pch = 1, cex = 3, lwd = 5, col = "red",
main = "Scatter Plot: Species Vs Endemics ")scatterplot(Species ~ Area, data = gala, pch = 1, cex = 3, lwd = 5, col = "blue",
main = "Scatter Plot: Species Vs Area ")scatterplot(Species ~ Elevation, data = gala, pch = 1, cex = 3, lwd = 5, col = "green",
main = "Scatter Plot: Species Vs Elevation ")scatterplot(Species ~ Nearest, data = gala, pch = 1, cex = 3, lwd = 5, col = "tomato2",
main = "Scatter Plot: Species Vs Nearest ")scatterplot(Species ~ Scruz, data = gala, pch = 1, cex = 3, lwd = 5, col = "deeppink3",
main = "Scatter Plot: Species Vs Scruz ")scatterplot(Species ~ Adjacent, data = gala, pch = 1, cex = 3, lwd = 5, col = "tan4",
main = "Scatter Plot: Species Vs Adjacent ")data(gala, package = "faraway")
OLModel.1 <- lm(Species ~ Adjacent + Area + Elevation + Endemics + Nearest + Scruz,
data = gala)
summary(OLModel.1)
Call:
lm(formula = Species ~ Adjacent + Area + Elevation + Endemics +
Nearest + Scruz, data = gala)
Residuals:
Min 1Q Median 3Q Max
-68.219 -10.225 1.830 9.557 71.090
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.337942 9.423550 -1.628 0.117
Adjacent 0.001811 0.011879 0.152 0.880
Area 0.013258 0.011403 1.163 0.257
Elevation -0.047537 0.047596 -0.999 0.328
Endemics 4.393654 0.481203 9.131 4.13e-09 ***
Nearest -0.101460 0.500871 -0.203 0.841
Scruz 0.008256 0.105884 0.078 0.939
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 28.96 on 23 degrees of freedom
Multiple R-squared: 0.9494, Adjusted R-squared: 0.9362
F-statistic: 71.88 on 6 and 23 DF, p-value: 9.674e-14
Adjacent Area Elevation Endemics Nearest Scruz
3.645582 3.356530 13.920084 5.979425 1.767133 1.793814
(Intercept) Adjacent Area Elevation Endemics Nearest Scruz
(Intercept) 1.000 -0.011 0.202 -0.072 -0.260 -0.035 -0.383
Adjacent -0.011 1.000 0.539 -0.840 0.706 0.184 0.051
Area 0.202 0.539 1.000 -0.703 0.357 0.181 0.058
Elevation -0.072 -0.840 -0.703 1.000 -0.845 -0.104 -0.166
Endemics -0.260 0.706 0.357 -0.845 1.000 -0.024 0.257
Nearest -0.035 0.184 0.181 -0.104 -0.024 1.000 -0.611
Scruz -0.383 0.051 0.058 -0.166 0.257 -0.611 1.000
library(zoo)
library(lmtest)
bptest(Species ~ Adjacent + Area + Elevation + Endemics + Nearest + Scruz, varformula = ~fitted.values(OLModel.1),
studentize = TRUE, data = gala)
studentized Breusch-Pagan test
data: Species ~ Adjacent + Area + Elevation + Endemics + Nearest + Scruz
BP = 10.67, df = 1, p-value = 0.001089
glmodel.1 <- glm(Species ~ Adjacent + Area + Elevation + Nearest + Scruz, family = poisson(link = log),
data = gala)
summary(glmodel.1)
Call:
glm(formula = Species ~ Adjacent + Area + Elevation + Nearest +
Scruz, family = poisson(link = log), data = gala)
Deviance Residuals:
Min 1Q Median 3Q Max
-8.2752 -4.4966 -0.9443 1.9168 10.1849
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***
Adjacent -6.630e-04 2.933e-05 -22.608 < 2e-16 ***
Area -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
Elevation 3.541e-03 8.741e-05 40.507 < 2e-16 ***
Nearest 8.826e-03 1.821e-03 4.846 1.26e-06 ***
Scruz -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
AIC: 889.68
Number of Fisher Scoring iterations: 5
\[\frac{\mathrm{Residual\_Deviance}}{\mathrm{DOF}} = \frac{716.85}{24} = 29.87 >> 1 \]
glmodel.2 <- glm(Species ~ Adjacent + Area + Elevation + Nearest + Scruz, family = quasipoisson(link = log),
data = gala)
summary(glmodel.2)
Call:
glm(formula = Species ~ Adjacent + Area + Elevation + Nearest +
Scruz, family = quasipoisson(link = log), data = gala)
Deviance Residuals:
Min 1Q Median 3Q Max
-8.2752 -4.4966 -0.9443 1.9168 10.1849
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1548079 0.2915901 10.819 1.03e-10 ***
Adjacent -0.0006630 0.0001653 -4.012 0.000511 ***
Area -0.0005799 0.0001480 -3.918 0.000649 ***
Elevation 0.0035406 0.0004925 7.189 1.98e-07 ***
Nearest 0.0088256 0.0102622 0.860 0.398292
Scruz -0.0057094 0.0035251 -1.620 0.118380
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 31.74921)
Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 5
\[\frac{\mathrm{Residual\_Deviance}}{\mathrm{DOF}} = \frac{716.85}{24} = 29.87 < 31.74921 \]
glmodel.3 <- glm(Species ~ Adjacent + Area + Elevation, family = quasipoisson(link = log),
data = gala)
summary(glmodel.3)
Call:
glm(formula = Species ~ Adjacent + Area + Elevation, family = quasipoisson(link = log),
data = gala)
Deviance Residuals:
Min 1Q Median 3Q Max
-11.852 -4.248 -1.013 2.466 10.607
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9613109 0.2617589 11.313 1.53e-11 ***
Adjacent -0.0007508 0.0001524 -4.928 4.07e-05 ***
Area -0.0005704 0.0001381 -4.129 0.000334 ***
Elevation 0.0035891 0.0004721 7.602 4.54e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 30.08156)
Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 818.74 on 26 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 5
Analysis of Deviance Table (Type II tests)
Response: Species
Error estimate based on Pearson residuals
Sum Sq Df F value Pr(>F)
Adjacent 624.61 1 19.6732 0.0001745 ***
Area 487.51 1 15.3550 0.0006472 ***
Elevation 1672.72 1 52.6856 1.688e-07 ***
Nearest 22.57 1 0.7107 0.4075257
Scruz 96.77 1 3.0481 0.0936229 .
Residuals 761.98 24
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Crawley, Michael J. 2013. “The R Book Second Edition.” John Wiley & Sons.