This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. The events in the database start in the year 1950 and end in November 2011. This database tracks when, where and at what time severe weather events occur in the United States and estimates the injuries caused, loss of life and property damage. The analysis conducted on this database reveals that most dangerous type of event with respect to human life is Tornado. Tornados are responsible for causing an estimated 5633 deaths and 91346 injuries. Based on economic impact, floods are most dangerous with an estimated $144.66 billion in damage to property.
The libraries used in this project are included below:
library(R.utils)
library(ggplot2)
library(plyr)
The database used in this project can be downloaded as follows:
# Download the dataset
filename <- "StormData.bz2"
# Checking if archieve already exists.
if (!file.exists(filename)){
fileURL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(fileURL, filename)
}
# Checking if folder exists
if (!file.exists("StormData")) {
bunzip2(filename, "StormData.csv")
}
Once the data is downloaded, it can be read by using the following line of code given below. The database is big so it could take some time depending on the machine.
data <- read.csv("StormData.csv")
A quick summary of data:
summary(data)
## STATE__ BGN_DATE BGN_TIME
## Min. : 1.0 5/25/2011 0:00:00: 1202 12:00:00 AM: 10163
## 1st Qu.:19.0 4/27/2011 0:00:00: 1193 06:00:00 PM: 7350
## Median :30.0 6/9/2011 0:00:00 : 1030 04:00:00 PM: 7261
## Mean :31.2 5/30/2004 0:00:00: 1016 05:00:00 PM: 6891
## 3rd Qu.:45.0 4/4/2011 0:00:00 : 1009 12:00:00 PM: 6703
## Max. :95.0 4/2/2006 0:00:00 : 981 03:00:00 PM: 6700
## (Other) :895866 (Other) :857229
## TIME_ZONE COUNTY COUNTYNAME STATE
## CST :547493 Min. : 0.0 JEFFERSON : 7840 TX : 83728
## EST :245558 1st Qu.: 31.0 WASHINGTON: 7603 KS : 53440
## MST : 68390 Median : 75.0 JACKSON : 6660 OK : 46802
## PST : 28302 Mean :100.6 FRANKLIN : 6256 MO : 35648
## AST : 6360 3rd Qu.:131.0 LINCOLN : 5937 IA : 31069
## HST : 2563 Max. :873.0 MADISON : 5632 NE : 30271
## (Other): 3631 (Other) :862369 (Other):621339
## EVTYPE BGN_RANGE BGN_AZI
## HAIL :288661 Min. : 0.000 :547332
## TSTM WIND :219940 1st Qu.: 0.000 N : 86752
## THUNDERSTORM WIND: 82563 Median : 0.000 W : 38446
## TORNADO : 60652 Mean : 1.484 S : 37558
## FLASH FLOOD : 54277 3rd Qu.: 1.000 E : 33178
## FLOOD : 25326 Max. :3749.000 NW : 24041
## (Other) :170878 (Other):134990
## BGN_LOCATI END_DATE END_TIME
## :287743 :243411 :238978
## COUNTYWIDE : 19680 4/27/2011 0:00:00: 1214 06:00:00 PM: 9802
## Countywide : 993 5/25/2011 0:00:00: 1196 05:00:00 PM: 8314
## SPRINGFIELD : 843 6/9/2011 0:00:00 : 1021 04:00:00 PM: 8104
## SOUTH PORTION: 810 4/4/2011 0:00:00 : 1007 12:00:00 PM: 7483
## NORTH PORTION: 784 5/30/2004 0:00:00: 998 11:59:00 PM: 7184
## (Other) :591444 (Other) :653450 (Other) :622432
## COUNTY_END COUNTYENDN END_RANGE END_AZI
## Min. :0 Mode:logical Min. : 0.0000 :724837
## 1st Qu.:0 NA's:902297 1st Qu.: 0.0000 N : 28082
## Median :0 Median : 0.0000 S : 22510
## Mean :0 Mean : 0.9862 W : 20119
## 3rd Qu.:0 3rd Qu.: 0.0000 E : 20047
## Max. :0 Max. :925.0000 NE : 14606
## (Other): 72096
## END_LOCATI LENGTH WIDTH
## :499225 Min. : 0.0000 Min. : 0.000
## COUNTYWIDE : 19731 1st Qu.: 0.0000 1st Qu.: 0.000
## SOUTH PORTION : 833 Median : 0.0000 Median : 0.000
## NORTH PORTION : 780 Mean : 0.2301 Mean : 7.503
## CENTRAL PORTION: 617 3rd Qu.: 0.0000 3rd Qu.: 0.000
## SPRINGFIELD : 575 Max. :2315.0000 Max. :4400.000
## (Other) :380536
## F MAG FATALITIES INJURIES
## Min. :0.0 Min. : 0.0 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.0 1st Qu.: 0.0 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :1.0 Median : 50.0 Median : 0.0000 Median : 0.0000
## Mean :0.9 Mean : 46.9 Mean : 0.0168 Mean : 0.1557
## 3rd Qu.:1.0 3rd Qu.: 75.0 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :5.0 Max. :22000.0 Max. :583.0000 Max. :1700.0000
## NA's :843563
## PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## Min. : 0.00 :465934 Min. : 0.000 :618413
## 1st Qu.: 0.00 K :424665 1st Qu.: 0.000 K :281832
## Median : 0.00 M : 11330 Median : 0.000 M : 1994
## Mean : 12.06 0 : 216 Mean : 1.527 k : 21
## 3rd Qu.: 0.50 B : 40 3rd Qu.: 0.000 0 : 19
## Max. :5000.00 5 : 28 Max. :990.000 B : 9
## (Other): 84 (Other): 9
## WFO STATEOFFIC
## :142069 :248769
## OUN : 17393 TEXAS, North : 12193
## JAN : 13889 ARKANSAS, Central and North Central: 11738
## LWX : 13174 IOWA, Central : 11345
## PHI : 12551 KANSAS, Southwest : 11212
## TSA : 12483 GEORGIA, North and Central : 11120
## (Other):690738 (Other) :595920
## ZONENAMES
## :594029
## :205988
## GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M : 639
## GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA : 592
## JEFFERSON - JEFFERSON : 303
## MADISON - MADISON : 302
## (Other) :100444
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_
## Min. : 0 Min. :-14451 Min. : 0 Min. :-14455
## 1st Qu.:2802 1st Qu.: 7247 1st Qu.: 0 1st Qu.: 0
## Median :3540 Median : 8707 Median : 0 Median : 0
## Mean :2875 Mean : 6940 Mean :1452 Mean : 3509
## 3rd Qu.:4019 3rd Qu.: 9605 3rd Qu.:3549 3rd Qu.: 8735
## Max. :9706 Max. : 17124 Max. :9706 Max. :106220
## NA's :47 NA's :40
## REMARKS REFNUM
## :287433 Min. : 1
## : 24013 1st Qu.:225575
## Trees down.\n : 1110 Median :451149
## Several trees were blown down.\n : 569 Mean :451149
## Trees were downed.\n : 446 3rd Qu.:676723
## Large trees and power lines were blown down.\n: 432 Max. :902297
## (Other) :588294
After the database is downloaded, some preprocessing is needed to be done on the data. The property damage column has to be added to display the damage in billions. This has been done by converting the PROPDMGEXP column to their corresponding values in numeric.
data$PROPDMGEXP <- mapvalues(data$PROPDMGEXP, from = c("K", "M","", "B", "m", "+", "0", "5", "6", "?", "4", "2", "3", "h", "7", "H", "-", "1", "8"), to = c(10^3, 10^6, 1, 10^9, 10^6, 0,1,10^5, 10^6, 0, 10^4, 10^2, 10^3, 10^2, 10^7, 10^2, 0, 10, 10^8))
data$PROPDMGEXP <- as.numeric(as.character(data$PROPDMGEXP))
# Converting the damage to billions
data$PROPDMGETTL <- (data$PROPDMG * data$PROPDMGEXP)/1000000000
First we look at the types of events that are most harmful with respect to population health. We look at the fatalities and injuries caused by severe weather.
To plot the graph for top 10 events responsible for most fatalities in the US, first we calculate the total fatatlites by the type of event:
fatalityData <- aggregate(data['FATALITIES'], by = data['EVTYPE'], sum)
fatalities <- head(fatalityData[order(fatalityData$FATALITIES, decreasing=TRUE), ], 10)
Now the graph can be plotted
ggplot(fatalities, aes(x = EVTYPE, y = FATALITIES, fill = FATALITIES)) + geom_bar(stat = "identity") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) + ggtitle("Top 10 Events with Highest Total Fatalities") + labs(x = "Event Type", y = "Total Fatalities")
Similarly for the top 10 events responsible for most injuries we need to calculate total injuries by event type:
injuryData <- aggregate(data['INJURIES'], by = data['EVTYPE'], sum)
injuries <- head(injuryData[order(injuryData$INJURIES, decreasing=TRUE), ], 10)
And the graph is plotted as:
ggplot(injuries, aes(x = EVTYPE, y = INJURIES, fill = INJURIES)) + geom_bar(stat = "identity") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) + ggtitle("Top 10 Events with Highest Total Injuries") + labs(x = "Event Type", y = "Total Injuries")
Secondly we look at the economic damage caused by these events. Specifically, we look at the property damage caused by these events.
For this we calculate the total property damge caused by the particular event:
propDmgData <- aggregate(data['PROPDMGETTL'], by = data['EVTYPE'], sum)
damage <- head(propDmgData[order(propDmgData$PROPDMGETTL, decreasing=TRUE), ], 10)
And finally the plot is:
ggplot(damage, aes(x = EVTYPE, y = PROPDMGETTL, fill = PROPDMGETTL)) + geom_bar(stat = "identity") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) + ggtitle("Top 10 Events with Highest Total Property Damage") + labs(x = "Event Type", y = "Total Damage (in billions)")