Synopsis

This analysis references the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database to find events that have had the most economic impact (based on property and crop damage) and health impact (based on fatalities and injuries) in the US. The NOAA database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Data Processing

Libraries

We will use the following libraries to explora and analyze the data:

library(tidyr)
library(dplyr)
library(ggplot2)
library(lubridate)
library(gridExtra)

Downloading Data

Data is downloaded from the course website.

dirName <- "data"
fileName <- "repdata_data_StormData.csv.bz2"
URL <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"

dirPath <- paste0("./",dirName)
newFilePath <- paste0(dirPath,"/",fileName)
if(!file.exists(dirName)){
  dir.create(dirName)
}

##Commenting because to avoid downloading every time the program is run
##download.file(URL,newFilePath )
noaaData <- read.csv(newFilePath)

Examining Data

The dataset has 902,297 observations and 37 variables.

str(noaaData)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
##  $ BGN_TIME  : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
##  $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
##  $ STATE     : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
##  $ EVTYPE    : Factor w/ 985 levels "   HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : Factor w/ 35 levels "","  N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_DATE  : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_TIME  : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ WFO       : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ ZONENAMES : Factor w/ 25112 levels "","                                                                                                               "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
summary(noaaData)
##     STATE__                  BGN_DATE             BGN_TIME     
##  Min.   : 1.0   5/25/2011 0:00:00:  1202   12:00:00 AM: 10163  
##  1st Qu.:19.0   4/27/2011 0:00:00:  1193   06:00:00 PM:  7350  
##  Median :30.0   6/9/2011 0:00:00 :  1030   04:00:00 PM:  7261  
##  Mean   :31.2   5/30/2004 0:00:00:  1016   05:00:00 PM:  6891  
##  3rd Qu.:45.0   4/4/2011 0:00:00 :  1009   12:00:00 PM:  6703  
##  Max.   :95.0   4/2/2006 0:00:00 :   981   03:00:00 PM:  6700  
##                 (Other)          :895866   (Other)    :857229  
##    TIME_ZONE          COUNTY           COUNTYNAME         STATE       
##  CST    :547493   Min.   :  0.0   JEFFERSON :  7840   TX     : 83728  
##  EST    :245558   1st Qu.: 31.0   WASHINGTON:  7603   KS     : 53440  
##  MST    : 68390   Median : 75.0   JACKSON   :  6660   OK     : 46802  
##  PST    : 28302   Mean   :100.6   FRANKLIN  :  6256   MO     : 35648  
##  AST    :  6360   3rd Qu.:131.0   LINCOLN   :  5937   IA     : 31069  
##  HST    :  2563   Max.   :873.0   MADISON   :  5632   NE     : 30271  
##  (Other):  3631                   (Other)   :862369   (Other):621339  
##                EVTYPE         BGN_RANGE           BGN_AZI      
##  HAIL             :288661   Min.   :   0.000          :547332  
##  TSTM WIND        :219940   1st Qu.:   0.000   N      : 86752  
##  THUNDERSTORM WIND: 82563   Median :   0.000   W      : 38446  
##  TORNADO          : 60652   Mean   :   1.484   S      : 37558  
##  FLASH FLOOD      : 54277   3rd Qu.:   1.000   E      : 33178  
##  FLOOD            : 25326   Max.   :3749.000   NW     : 24041  
##  (Other)          :170878                      (Other):134990  
##          BGN_LOCATI                  END_DATE             END_TIME     
##               :287743                    :243411              :238978  
##  COUNTYWIDE   : 19680   4/27/2011 0:00:00:  1214   06:00:00 PM:  9802  
##  Countywide   :   993   5/25/2011 0:00:00:  1196   05:00:00 PM:  8314  
##  SPRINGFIELD  :   843   6/9/2011 0:00:00 :  1021   04:00:00 PM:  8104  
##  SOUTH PORTION:   810   4/4/2011 0:00:00 :  1007   12:00:00 PM:  7483  
##  NORTH PORTION:   784   5/30/2004 0:00:00:   998   11:59:00 PM:  7184  
##  (Other)      :591444   (Other)          :653450   (Other)    :622432  
##    COUNTY_END COUNTYENDN       END_RANGE           END_AZI      
##  Min.   :0    Mode:logical   Min.   :  0.0000          :724837  
##  1st Qu.:0    NA's:902297    1st Qu.:  0.0000   N      : 28082  
##  Median :0                   Median :  0.0000   S      : 22510  
##  Mean   :0                   Mean   :  0.9862   W      : 20119  
##  3rd Qu.:0                   3rd Qu.:  0.0000   E      : 20047  
##  Max.   :0                   Max.   :925.0000   NE     : 14606  
##                                                 (Other): 72096  
##            END_LOCATI         LENGTH              WIDTH         
##                 :499225   Min.   :   0.0000   Min.   :   0.000  
##  COUNTYWIDE     : 19731   1st Qu.:   0.0000   1st Qu.:   0.000  
##  SOUTH PORTION  :   833   Median :   0.0000   Median :   0.000  
##  NORTH PORTION  :   780   Mean   :   0.2301   Mean   :   7.503  
##  CENTRAL PORTION:   617   3rd Qu.:   0.0000   3rd Qu.:   0.000  
##  SPRINGFIELD    :   575   Max.   :2315.0000   Max.   :4400.000  
##  (Other)        :380536                                         
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9  
##       WFO                                       STATEOFFIC    
##         :142069                                      :248769  
##  OUN    : 17393   TEXAS, North                       : 12193  
##  JAN    : 13889   ARKANSAS, Central and North Central: 11738  
##  LWX    : 13174   IOWA, Central                      : 11345  
##  PHI    : 12551   KANSAS, Southwest                  : 11212  
##  TSA    : 12483   GEORGIA, North and Central         : 11120  
##  (Other):690738   (Other)                            :595920  
##                                                                                                                                                                                                     ZONENAMES     
##                                                                                                                                                                                                          :594029  
##                                                                                                                                                                                                          :205988  
##  GREATER RENO / CARSON CITY / M - GREATER RENO / CARSON CITY / M                                                                                                                                         :   639  
##  GREATER LAKE TAHOE AREA - GREATER LAKE TAHOE AREA                                                                                                                                                       :   592  
##  JEFFERSON - JEFFERSON                                                                                                                                                                                   :   303  
##  MADISON - MADISON                                                                                                                                                                                       :   302  
##  (Other)                                                                                                                                                                                                 :100444  
##     LATITUDE      LONGITUDE        LATITUDE_E     LONGITUDE_    
##  Min.   :   0   Min.   :-14451   Min.   :   0   Min.   :-14455  
##  1st Qu.:2802   1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0  
##  Median :3540   Median :  8707   Median :   0   Median :     0  
##  Mean   :2875   Mean   :  6940   Mean   :1452   Mean   :  3509  
##  3rd Qu.:4019   3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735  
##  Max.   :9706   Max.   : 17124   Max.   :9706   Max.   :106220  
##  NA's   :47                      NA's   :40                     
##                                            REMARKS           REFNUM      
##                                                :287433   Min.   :     1  
##                                                : 24013   1st Qu.:225575  
##  Trees down.\n                                 :  1110   Median :451149  
##  Several trees were blown down.\n              :   568   Mean   :451149  
##  Trees were downed.\n                          :   446   3rd Qu.:676723  
##  Large trees and power lines were blown down.\n:   432   Max.   :902297  
##  (Other)                                       :588295

PreProcessing Data

The following transformations were needed in order to complete the required data analysis:

  1. Group similar event types together- Event naming conventions are not standardized and thus created duplicates. The grouping of events was not exhaustive, but focused on the events that would impact this analysis.
processedNoaaData <- noaaData
processedNoaaData$EVTYPE <- toupper(processedNoaaData$EVTYPE) 

##Group Similar events together. The data is not standardized
processedNoaaData$EVTYPE[grep("AVALAN", processedNoaaData$EVTYPE)]                            <-
  "AVALANCHE"
processedNoaaData$EVTYPE[grep("BLIZ", processedNoaaData$EVTYPE)]                              <-
  "BLIZZARD"
processedNoaaData$EVTYPE[grep("FLOOD|FLDG|FLD|FLOOO", processedNoaaData$EVTYPE)]              <-
  "FLOOD"
processedNoaaData$EVTYPE[grep("RAIN", processedNoaaData$EVTYPE)]                              <-
  "HEAVY RAIN"
processedNoaaData$EVTYPE[grep("WARMTH|HEAT|HEATWAVE|HOT|HIGH TEMP" ,
                              processedNoaaData$EVTYPE)]                                      <-
  "HEAT"
processedNoaaData$EVTYPE[grep("FLOOD", processedNoaaData$EVTYPE)]                             <-
  "FLOOD"
processedNoaaData$EVTYPE[grep("FOG", processedNoaaData$EVTYPE)]                               <-
  "FOG"
processedNoaaData$EVTYPE[grep("FROST", processedNoaaData$EVTYPE)]                             <-
  "FROST"
processedNoaaData$EVTYPE[grep("HURRICANE", processedNoaaData$EVTYPE)]                         <-
  "HURRICANE"
processedNoaaData$EVTYPE[grep("SNOW", processedNoaaData$EVTYPE)]                              <-
  "SNOW"
processedNoaaData$EVTYPE[grep("THUNDER|TSTM", processedNoaaData$EVTYPE)]                      <-
  "TSTM"
processedNoaaData$EVTYPE[grep("STORM SURGE", processedNoaaData$EVTYPE)]                       <-
  "STORM SURGE"
processedNoaaData$EVTYPE[grep("LIGHTN|LIGHTI|LIGNT", processedNoaaData$EVTYPE)]               <-
  "LIGHTNING"
processedNoaaData$EVTYPE[grep("WIND|WND", processedNoaaData$EVTYPE)]                          <-
  "WIND"
processedNoaaData$EVTYPE[grep("TORN", processedNoaaData$EVTYPE)]                              <-
  "TORNADO"
processedNoaaData$EVTYPE[grep("WILD", processedNoaaData$EVTYPE)]                              <-
  "WILDFIRE"

processedNoaaData$EVTYPE[grep("RIP", processedNoaaData$EVTYPE)]                               <-
  "RIP CURRENT"
  1. Calculate actual property and crop damages- Upon researching the meaning of the PROPDMEXP and CROPDMGEXP fields, I found references indicating these indicated the units of the property damage and copr damage respectively, requiring additional calculations.
##Get actual multiple for property and crop damages. Had to do some research.

##Property Damages

processedNoaaData <- processedNoaaData %>% mutate(PropertyDamageExp = 0)
processedNoaaData[processedNoaaData$PROPDMGEXP %in% c("H","h"),]$PropertyDamageExp <- 10^2
processedNoaaData[processedNoaaData$PROPDMGEXP %in% c("K","k"),]$PropertyDamageExp <- 10^3
processedNoaaData[processedNoaaData$PROPDMGEXP %in% c("M","m"),]$PropertyDamageExp <- 10^6
processedNoaaData[processedNoaaData$PROPDMGEXP %in% c("B","b"),]$PropertyDamageExp <- 10^9
processedNoaaData[processedNoaaData$PROPDMGEXP == "+",]$PropertyDamageExp <- 1
processedNoaaData[processedNoaaData$PROPDMGEXP %in% c("0","1","2","3","4","5","6","7","8"),]$PropertyDamageExp <- 10
processedNoaaData[processedNoaaData$PROPDMGEXP %in% c("-","?",""),]$PropertyDamageExp <- 0
processedNoaaData <- processedNoaaData %>% mutate(ActualPropertyDamage = PropertyDamageExp * PROPDMG,
                                                  ActualPropertyDamageInMillions = ActualPropertyDamage/(10^6) )


##Crop Damages

processedNoaaData <- processedNoaaData %>% mutate(CropDamageExp = 0)
##processedNoaaData[processedNoaaData$CROPDMGEXP %in% c("H","h"),]$CropDamageExp <- 10^2
processedNoaaData[processedNoaaData$CROPDMGEXP %in% c("K","k"),]$CropDamageExp <- 10^3
processedNoaaData[processedNoaaData$CROPDMGEXP %in% c("M","m"),]$CropDamageExp <- 10^6
processedNoaaData[processedNoaaData$CROPDMGEXP %in% c("B","b"),]$CropDamageExp <- 10^9
#processedNoaaData[processedNoaaData$CROPDMGEXP == "+",]$CropDamageExp <- 1
processedNoaaData[processedNoaaData$CROPDMGEXP %in% c("0","1","2","3","4","5","6","7","8"),]$CropDamageExp <- 10
processedNoaaData[processedNoaaData$CROPDMGEXP %in% c("-","?",""),]$CropDamageExp <- 0

processedNoaaData <- processedNoaaData %>% mutate(ActualCropDamage = CropDamageExp * CROPDMG,
                                                  ActualCropDamageInMillions = ActualCropDamage/(10^6) )
  1. Filter for data after 1980- Since data for most event types is not available for earlier years, the analysis is focused in the last 40 years.

  2. Select and rename relevant data points- Only event type, begin date, fatalities, injuries, property damage and crop damage are needed for the purpose of this analysis.

processedNoaaData <- processedNoaaData %>% 
  select(BGN_DATE, 
         STATE, EVTYPE, 
         FATALITIES, 
         INJURIES, 
         ActualPropertyDamageInMillions, 
         ActualCropDamageInMillions ) %>%
  rename(BeginDate = BGN_DATE, 
         EventType = EVTYPE, 
         TotalFatalities = FATALITIES,
         TotalInjuries = INJURIES) %>%
  mutate(TotalEconomicDamage = ActualPropertyDamageInMillions + ActualPropertyDamageInMillions) %>%
  mutate(TotalHealthImpact = TotalFatalities + TotalInjuries) %>%
  mutate(date = as.Date(BeginDate, format = "%m/%d/%Y")) %>% 
  mutate(year= year(date)) %>% 
  filter(year > 1980)
  1. Aggregate the necessary calculations per event type- Including totalInjuries, totalFatalities, totalPropertyDamage, totalCropDamage, totalEconomicImpact and totalEvents per event type. I also calculated individual damage rates and health impacts for each events.
eventTypeSummary <- processedNoaaData %>% 
    group_by(EventType) %>% 
    summarise(totalFatalities = sum(TotalFatalities), 
              totalInjuries = sum(TotalInjuries), 
              totalHealthImpact = sum(TotalHealthImpact),
              totalPropertyDamage = sum(ActualPropertyDamageInMillions),
              totalCropDamage = sum(ActualCropDamageInMillions),
              totalEconomicDamage = sum(TotalEconomicDamage),
              totalEvents = n(),
              fatalityRate = totalFatalities/totalEvents,
              injuryRate = totalInjuries/totalEvents,
              healthDamageRate = totalHealthImpact/totalEvents,
              economicDamageRate = totalEconomicDamage/totalEvents,
              cropDamageRate = totalCropDamage/totalEvents) %>%
    filter(totalEvents > 50)
  1. Separate Injuries/Fatalities and Property/Crop totals in separate rows- to visualize breakdown of cumulative impact of each category.
##Economic Impact Breakdown
propertyDamage <- eventTypeSummary %>% 
  mutate(DamageType = "Property", Total = totalPropertyDamage) %>%
  select(EventType, DamageType, Total, totalEconomicDamage, economicDamageRate, totalEvents)

cropDamage <- eventTypeSummary %>% 
  mutate(DamageType = "Crop", Total = totalCropDamage) %>%
  select(EventType, DamageType, Total, totalEconomicDamage, economicDamageRate, totalEvents)

##Health Impact Breakdown

fatalities <- eventTypeSummary %>% 
  mutate(HealthImpact = "Fatalities", Total = totalFatalities) %>%
  select(EventType, HealthImpact, Total, totalHealthImpact, healthDamageRate, totalEvents)

injuries <- eventTypeSummary %>% 
  mutate(HealthImpact = "Injuries", Total = totalInjuries) %>%
  select(EventType, HealthImpact, Total, totalHealthImpact, healthDamageRate, totalEvents)

Results

The analysis covers idividual and cumulative health and economic impact for event types. We also want to check the trend to see if the impact is decreasing over time as the US takes preventive and protective measures over these events.

Which types of events are most harmful to population health?

Tornados have had the greatest cumulative ecnomic impact since 1980, but hurricanes have the most economic damage per individual event.

##Calculate and plot Cumulative Health Impact
cumulativeHealthImpact <- rbind(fatalities,injuries) %>% arrange(desc(totalHealthImpact)) %>% slice(1:10)


plotCumulativeHealthImpact <- 
  ggplot(cumulativeHealthImpact, aes(x=reorder(EventType, -Total) , y= Total, fill=HealthImpact)) +
  geom_bar(stat = "identity") +
  labs(title = "Event Types with Most \nCumulative Health Damaage", x="Event Type", y="Total Injuries & Fatalities") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),legend.position = "bottom")


##Calculate and plot impact of each event
individualHealthImpact <- eventTypeSummary %>% 
  arrange(desc(healthDamageRate)) %>%
  select(EventType,healthDamageRate, totalHealthImpact, totalEvents)  %>% slice(1:5)

plotHealthDamagePerEvent <- 
  ggplot(individualHealthImpact, aes(x= reorder(EventType, -healthDamageRate), y= healthDamageRate)) +
  geom_bar(stat = "identity", fill="darkcyan") +
  labs(title = "Individual Events Causing Most \nHealth Damage", x= "Event Type", y = "Health Damage Rate") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
##Arrange plots side by side on a grid
grid.arrange(plotCumulativeHealthImpact, plotHealthDamagePerEvent, nrow = 1, ncol = 2)
\label{fig:figs}Figure 2: Health Impact

Figure 2: Health Impact

Viewing the detailed data below:

##print details

cumulativeHealthImpact
## # A tibble: 10 x 6
##    EventType HealthImpact Total totalHealthImpact healthDamageRate totalEvents
##    <chr>     <chr>        <dbl>             <dbl>            <dbl>       <int>
##  1 TORNADO   Fatalities    2249             39124           1.03         37849
##  2 TORNADO   Injuries     36875             39124           1.03         37849
##  3 HEAT      Fatalities    3138             12362           4.34          2847
##  4 HEAT      Injuries      9224             12362           4.34          2847
##  5 TSTM      Fatalities     755             10299           0.0342      301280
##  6 TSTM      Injuries      9544             10299           0.0342      301280
##  7 FLOOD     Fatalities    1553             10236           0.119        86128
##  8 FLOOD     Injuries      8683             10236           0.119        86128
##  9 LIGHTNING Fatalities     817              6048           0.384        15765
## 10 LIGHTNING Injuries      5231              6048           0.384        15765
individualHealthImpact
## # A tibble: 5 x 4
##   EventType   healthDamageRate totalHealthImpact totalEvents
##   <chr>                  <dbl>             <dbl>       <int>
## 1 HURRICANE               5.08              1463         288
## 2 HEAT                    4.34             12362        2847
## 3 ICE                     2.34               143          61
## 4 RIP CURRENT             1.42              1106         777
## 5 DUST STORM              1.08               462         427

Which types of events have the greatest economic consequences?

Floods have had the greatest cumulative ecnomic impact since 1980, but hurricanes have the most economic damage per individual event.

##Calculate and plot cumulative economic impact

cumulativeEconomicImpact <- rbind(propertyDamage,cropDamage) %>% arrange(desc(totalEconomicDamage)) %>% slice(1:10)


plotCumulativeEconomicImpact <- 
  ggplot(cumulativeEconomicImpact, aes(x = reorder(EventType, -Total), y = Total, fill=DamageType)) +
  geom_bar(stat = "identity") +
  labs(title = "Event Types with Most \nCumulative Economic Impact",
       x = "Event Type", y = "Economic Damage (in millions)",
       legend = "Damage Type") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1), legend.position = "bottom")


##Calculate and plot individual economic impact

individualEconomicImpact <- eventTypeSummary %>% 
  arrange(desc(economicDamageRate)) %>%
  select(EventType,economicDamageRate, totalEconomicDamage, totalEvents) %>%
  slice(1:5)

plotEconomicImpactPerEvent <- 
 ggplot(individualEconomicImpact, aes(x = reorder(EventType, -economicDamageRate), y = economicDamageRate)) +
  geom_bar(stat = "identity", fill="darkcyan") +
  labs(title = "Event Types with Most \nIndividual Economic Impact",
       x = "Event Type", y = "Economic Damage (in millions)") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
##Arrange plots side by side on a grid
grid.arrange(plotCumulativeEconomicImpact, plotEconomicImpactPerEvent, nrow = 1, ncol = 2)
\label{fig:figs}Figure 3: Economic Impact

Figure 3: Economic Impact

Viewing the detailed data below:

##print details

cumulativeEconomicImpact
## # A tibble: 10 x 6
##    EventType  DamageType    Total totalEconomicDam~ economicDamageR~ totalEvents
##    <chr>      <chr>         <dbl>             <dbl>            <dbl>       <int>
##  1 FLOOD      Property    1.68e+5           335176.            3.89        86128
##  2 FLOOD      Crop        1.24e+4           335176.            3.89        86128
##  3 HURRICANE  Property    8.48e+4           169512.          589.            288
##  4 HURRICANE  Crop        5.52e+3           169512.          589.            288
##  5 STORM SUR~ Property    4.80e+4            95929.          235.            409
##  6 STORM SUR~ Crop        8.55e-1            95929.          235.            409
##  7 TORNADO    Property    4.15e+4            83083.            2.20        37849
##  8 TORNADO    Crop        4.15e+2            83083.            2.20        37849
##  9 HAIL       Property    1.57e+4            31465.            0.118      265525
## 10 HAIL       Crop        3.03e+3            31465.            0.118      265525
individualEconomicImpact
## # A tibble: 5 x 4
##   EventType      economicDamageRate totalEconomicDamage totalEvents
##   <chr>                       <dbl>               <dbl>       <int>
## 1 HURRICANE                  589.               169512.         288
## 2 STORM SURGE                235.                95929.         409
## 3 TROPICAL STORM              22.3               15408.         690
## 4 WILDFIRE                     4.01              16983.        4231
## 5 ICE STORM                    3.93               7890.        2006

Is the impact of hurricanes improving over time?

Hurricanes have had the a significant negative impact on health and the economy in the US. Hurricanes are getting stronger but the US has also taken more preventive measures over the years. Both the economic and health impact seem to be increasing over the years. Hurricanes are getting stronger and the security measures are probably not enough.

#Economic Impact By Year
hurricanImpactByYear <- processedNoaaData %>% 
  filter(EventType == "HURRICANE") %>%
  group_by(EventType,year) %>% 
  summarise(
            totalPropertyDamage = sum(ActualPropertyDamageInMillions),
            totalCropDamage = sum(ActualCropDamageInMillions),
            totalEconomicDamage = sum(TotalEconomicDamage),
            totalEvents = n(),
            economicDamageRate = totalEconomicDamage/totalEvents,
            totalFatalities = sum(TotalFatalities), 
            totalInjuries = sum(TotalInjuries), 
            totalHealthImpact = sum(TotalHealthImpact),
            fatalityRate = totalFatalities/totalEvents,
            injuryRate = totalInjuries/totalEvents,
            healthDamageRate = totalHealthImpact/totalEvents) 
  
plotEconomicDamageTrend <- ggplot(hurricanImpactByYear, aes(year, economicDamageRate)) +
  geom_point() + 
  geom_smooth(method=lm, se=FALSE) +
  labs(title = "Hurricane Economic Damage Rate \nBy Year", x = "Economic Damage Rate (in millions)")

##Health Impact By Year


plotHealthDamageTrend <- ggplot(hurricanImpactByYear, aes(year, healthDamageRate)) +
  geom_point() + 
  geom_smooth(method=lm, se=FALSE) +
  labs(title = "Hurricane Health Damage Rate \nBy Year", x = "Health Damage Rate")
##Arrange plots side by side on a grid
grid.arrange(plotEconomicDamageTrend, plotHealthDamageTrend, nrow = 1)
\label{fig:figs}Figure 3: Impact Trends

Figure 3: Impact Trends