Overview

Many sport leagues today are making use of data analytics to measure the value/impact a player has on the game. Knowing this information allows teams to find the best players and try to acquire them, or give more opportunities to their own players. A new metric for evaluating NBA players was recently made, called RAPTOR. The link to the article is below:

https://fivethirtyeight.com/features/introducing-raptor-our-new-metric-for-the-modern-nba/

R Markdown

raptor <- read.csv('latest_RAPTOR_by_player.csv')
head(raptor)
##                player_name player_id season poss   mp raptor_box_offense
## 1             Steven Adams adamsst01   2020 2406 1151         1.10735869
## 2              Bam Adebayo adebaba01   2020 3321 1621        -0.94971328
## 3        LaMarcus Aldridge aldrila01   2020 2982 1426        -0.29648202
## 4 Nickeil Alexander-Walker alexani01   2020 1068  488        -2.46306006
## 5            Grayson Allen allengr01   2020 1100  498        -0.05537151
## 6            Jarrett Allen allenja01   2020 2661 1253        -1.44701052
##   raptor_box_defense raptor_box_total raptor_onoff_offense raptor_onoff_defense
## 1          0.7588565        1.8662152             2.056921            1.5087383
## 2          1.8378767        0.8881634             3.448555            1.9157030
## 3          0.7189402        0.4224582            -2.228883           -2.3249303
## 4         -1.6394255       -4.1024856             1.688460           -3.4831949
## 5         -1.4321936       -1.4875651            -1.398012           -2.8576064
## 6          3.2932180        1.8462075             4.126534           -0.9381903
##   raptor_onoff_total raptor_offense raptor_defense raptor_total  war_total
## 1           3.565660      1.3631522      0.9680782    2.3312304  2.9621261
## 2           5.364258     -0.1249835      1.9401977    1.8152142  3.7430885
## 3          -4.553813     -0.7564653      0.1693034   -0.5871619  1.5568566
## 4          -1.794735     -1.7498618     -2.0776347   -3.8274965 -0.2691600
## 5          -4.255619     -0.3303190     -1.7883294   -2.1186484  0.1611581
## 6           3.188344     -0.3555392      2.6047127    2.2491735  3.1718105
##   war_reg_season war_playoffs predator_offense predator_defense predator_total
## 1      2.9621261            0        0.6289919         1.223214      1.8522056
## 2      3.7430885            0       -0.2480244         1.087785      0.8397601
## 3      1.5568566            0       -0.8111526         0.593952     -0.2172006
## 4     -0.2691600            0       -0.1376933        -2.235791     -2.3734846
## 5      0.1611581            0       -0.2830240        -2.668864     -2.9518884
## 6      3.1718105            0       -0.7801081         2.448162      1.6680539
##   pace_impact
## 1  -0.7447600
## 2  -0.8784285
## 3  -1.0834163
## 4   0.3376065
## 5   0.4736383
## 6  -0.7684053
colnames(raptor)
##  [1] "player_name"          "player_id"            "season"              
##  [4] "poss"                 "mp"                   "raptor_box_offense"  
##  [7] "raptor_box_defense"   "raptor_box_total"     "raptor_onoff_offense"
## [10] "raptor_onoff_defense" "raptor_onoff_total"   "raptor_offense"      
## [13] "raptor_defense"       "raptor_total"         "war_total"           
## [16] "war_reg_season"       "war_playoffs"         "predator_offense"    
## [19] "predator_defense"     "predator_total"       "pace_impact"
pacman::p_load(dplyr, tidyr, magrittr)
raptor %<>%
  select(-c(season, war_playoffs,
            war_reg_season))
raptor %<>%
  rename(possessions = poss,
         minutes_played = mp)

colnames(raptor)
##  [1] "player_name"          "player_id"            "possessions"         
##  [4] "minutes_played"       "raptor_box_offense"   "raptor_box_defense"  
##  [7] "raptor_box_total"     "raptor_onoff_offense" "raptor_onoff_defense"
## [10] "raptor_onoff_total"   "raptor_offense"       "raptor_defense"      
## [13] "raptor_total"         "war_total"            "predator_offense"    
## [16] "predator_defense"     "predator_total"       "pace_impact"

Findings and Recommendations

The columns in RAPTOR are likely all significant in being able to measure a player’s value, which is generalized by the column “war_total”, so I did not remove many columns. I removed season as all the data is from the same season, 2020. I removed war_playoffs and war_reg_season because the playoffs have not happened yet and is just a column of 0’s, all the information is based on regular season data. I then renamed poss to possessions and mp to minutes played as they are not intuitive names.