The U.S. National Oceanic and Atmospheric Administration’s store data of the mayor enviromental and storm events throughout the United States. Keeping data about when they happened and their incidents. Casualties, economic impacts, injuries or property damage. This kind of events create insecurity and in some cases collapse of social services and early attencion by the autorithies. For this matter this study tries to understand in first place which events are the more harmful for the population health and those which have the worse economic consequences.
Load treatment package
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Load ploting interface
library(ggplot2)
Download data file
url <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
destfile ='repdata-data-StormData.csv'
if(!file.exists(destfile)){
download.file(url, destfile)
}
Read data file.
event.db <- read.csv(file = "repdata-data-StormData.csv", header = TRUE, sep = ",")
Check the amount of data.
dim(event.db)
## [1] 902297 37
Review the variables names.
names(event.db)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
Review the variables data types
str(event.db)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
It is necesary to isolate the results for injuries, fatalities and damages. Those variables will lead us to answer the questions of this analysis.
Events with unless 1 injury
injuries.event <- event.db %>% group_by(EVTYPE) %>% summarize(total.injuries = sum(INJURIES, na.rm = TRUE)) %>% filter(total.injuries!=0) %>% arrange(-total.injuries)
injuries.event <- injuries.event[1:6,]
injuries.event
## # A tibble: 6 x 2
## EVTYPE total.injuries
## <fct> <dbl>
## 1 TORNADO 91346
## 2 TSTM WIND 6957
## 3 FLOOD 6789
## 4 EXCESSIVE HEAT 6525
## 5 LIGHTNING 5230
## 6 HEAT 2100
Ploting the injuries distribution top 6
p <- ggplot(injuries.event, aes(x = reorder(EVTYPE, -total.injuries) , y =total.injuries )) + geom_bar(stat="identity") + ggtitle("Injuries by Event") + xlab("Event") + ylab("Number of Injuries")
p
Events with unless 1 fatality
fatalities.event <- event.db %>% group_by(EVTYPE) %>% summarize(total.fatalities = sum(FATALITIES)) %>% filter(total.fatalities!=0) %>% arrange(-total.fatalities)
fatalities.event <- fatalities.event[1:6,]
fatalities.event
## # A tibble: 6 x 2
## EVTYPE total.fatalities
## <fct> <dbl>
## 1 TORNADO 5633
## 2 EXCESSIVE HEAT 1903
## 3 FLASH FLOOD 978
## 4 HEAT 937
## 5 LIGHTNING 816
## 6 TSTM WIND 504
Ploting the fatalities distribution top 6
p <- ggplot(fatalities.event, aes(x = reorder(EVTYPE, -total.fatalities) , y =total.fatalities )) + geom_bar(stat="identity") + ggtitle("Fatalities by Event") + xlab("Event") + ylab("Number of fatalities")
p
In here we have two economic causes, the property damage and the crop one. the result of economical consequencs has to be the sum of both
But first of all It has to be reviewed the multipliyers related to both.
head(event.db$PROPDMGEXP,5)
## [1] K K K K K
## Levels: - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
head(event.db$CROPDMGEXP,5)
## [1]
## Levels: ? 0 2 B k K m M
And convert them properly by property
event.db$PROPEXP[event.db$PROPDMGEXP == "" ] <- 1
event.db$PROPEXP[event.db$PROPDMGEXP == "0"] <- 1
event.db$PROPEXP[event.db$PROPDMGEXP == "1"] <- 10
event.db$PROPEXP[event.db$PROPDMGEXP == "2"] <- 100
event.db$PROPEXP[event.db$PROPDMGEXP == "3"] <- 1000
event.db$PROPEXP[event.db$PROPDMGEXP == "4"] <- 10000
event.db$PROPEXP[event.db$PROPDMGEXP == "5"] <- 1e+05
event.db$PROPEXP[event.db$PROPDMGEXP == "6"] <- 1e+06
event.db$PROPEXP[event.db$PROPDMGEXP == "7"] <- 1e+07
event.db$PROPEXP[event.db$PROPDMGEXP == "8"] <- 1e+08
event.db$PROPEXP[event.db$PROPDMGEXP == "H"] <- 100
event.db$PROPEXP[event.db$PROPDMGEXP == "h"] <- 100
event.db$PROPEXP[event.db$PROPDMGEXP == "K"] <- 1000
event.db$PROPEXP[event.db$PROPDMGEXP == "M"] <- 1e+06
event.db$PROPEXP[event.db$PROPDMGEXP == "m"] <- 1e+06
event.db$PROPEXP[event.db$PROPDMGEXP == "B"] <- 1e+09
event.db$PROPEXP[event.db$PROPDMGEXP == "+"] <- 0
event.db$PROPEXP[event.db$PROPDMGEXP == "-"] <- 0
event.db$PROPEXP[event.db$PROPDMGEXP == "?"] <- 0
And by crop
event.db$CROPEXP[event.db$CROPDMGEXP == "" ] <- 1
event.db$CROPEXP[event.db$CROPDMGEXP == "0"] <- 1
event.db$CROPEXP[event.db$CROPDMGEXP == "2"] <- 100
event.db$CROPEXP[event.db$CROPDMGEXP == "k"] <- 100
event.db$CROPEXP[event.db$CROPDMGEXP == "K"] <- 1000
event.db$CROPEXP[event.db$CROPDMGEXP == "M"] <- 1e+06
event.db$CROPEXP[event.db$CROPDMGEXP == "m"] <- 1e+06
event.db$CROPEXP[event.db$CROPDMGEXP == "?"] <- 0
Events with biggest economic damage top 6
damage.event <- event.db %>% group_by(EVTYPE) %>% summarize(total.damage= sum((PROPDMG * PROPEXP) + (CROPDMG * CROPEXP))) %>% filter(total.damage!=0) %>% arrange(-total.damage)
damage.event <- damage.event[1:6,]
damage.event
## # A tibble: 6 x 2
## EVTYPE total.damage
## <fct> <dbl>
## 1 FLOOD 150319678257
## 2 TORNADO 57362333886.
## 3 STORM SURGE 43323541000
## 4 HAIL 18760846686.
## 5 FLASH FLOOD 18243991078.
## 6 HURRICANE 14610229010
Ploting the fatalities distribution top 6
p <- ggplot(damage.event, aes(x = reorder(EVTYPE, -total.damage) , y =total.damage)) + geom_bar(stat="identity") + ggtitle("Total Damage by Event") + xlab("Event") + ylab("Damage amount")
p
We could say that tornados are the most harmful phenomenon which has more injuries and fatalities level
In the other way the Floods is the one which creates the bigger economic disasters. Joining the property loses and crops ones.